background image

Journal Pre-proof

Glycolytic activation of β-cell Na+/K+-ATPases containing β1-subunits accelerates
Na+ extrusion, prolonging the duration of Ca2+ oscillations but decreasing insulin

secretion

Matthew T. Dickerson, Prasanna K. Dadi, Reagan P. McDevitt, Jordyn R. Dobson,

Soma Behera, Spencer J. Peachee, Shannon E. Gibson, Tenzin Wangmo, David A.

Jacobson
PII:

S2212-8778(25)00203-0

DOI:

https://doi.org/10.1016/j.molmet.2025.102296

Reference:

MOLMET 102296

To appear in:

Molecular Metabolism

Received Date: 9 September 2025
Revised Date: 7 November 2025
Accepted Date: 26 November 2025

Please cite this article as: Dickerson MT, Dadi PK, McDevitt RP, Dobson JR, Behera S, Peachee SJ,
Gibson SE, Wangmo T, Jacobson DA, Glycolytic activation of β-cell Na+/K+-ATPases containing β1-
subunits accelerates Na+ extrusion, prolonging the duration of Ca2+ oscillations but decreasing insulin

secretion, 

Molecular Metabolism

, 

https://doi.org/10.1016/j.molmet.2025.102296

.

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition

of a cover page and metadata, and formatting for readability. This version will undergo additional

copyediting, typesetting and review before it is published in its final form. As such, this version is no

longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing

this early version to give early visibility of the article. Please note that Elsevier’s sharing policy for the

Published Journal Article applies to this version, see: 

https://www.elsevier.com/about/policies-and-

standards/sharing#4-published-journal-article

. Please also note that, during the production process,

errors may be discovered which could affect the content, and all legal disclaimers that apply to the

journal pertain.

1-s2.0-S2212877825002030-main-html.html
background image

© 2025 Published by Elsevier GmbH.

1-s2.0-S2212877825002030-main-html.html
background image

Glycolytic activation of β-cell Na

+

/K

+

-ATPases containing β1-subunits accelerates Na

+

 

extrusion, prolonging the duration of Ca

2+

 oscillations but decreasing insulin secretion

 

 

Matthew T. Dickerson

1

, Prasanna K. Dadi

1

, Reagan P. McDevitt

1,2

, Jordyn R. Dobson

1

, Soma 

Behera

1

, Spencer J. Peachee

1

, Shannon E. Gibson

1

, Tenzin Wangmo

1

, David A. Jacobson

1

 

 

1

Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.

 

2

University of Mississippi Medical Center School of Medicine, Jackson, MS, USA.

 

 

Abstract

 

10 

Electrogenic Na

+

/K

+

 ATPases (NKAs) control β-cell Ca

2+

 influx and insulin secretion by integrating 

11 

the signal strength of stimulatory G protein (G

s

)-coupled ligands (e.g., GLP-1, glucagon) and 

12 

inhibitory G protein (G

i

)-coupled ligands (e.g., somatostatin, epinephrine). However, there is a 

13 

significant gap in our understanding of how specific NKA subunits contribute to β-cell function. 

14 

Here, we demonstrate that the NKA β1-subunit (NKAβ1) is highly expressed and functional at 

15 

the plasma membrane of mouse and human β-cells. β-cell-specific NKAβ1 knockout improves 

16 

glucose tolerance and hepatic insulin sensitivity, coinciding with enhanced first- and second-

17 

phase glucose-stimulated insulin secretion (GSIS). Electrophysiological studies reveal that β-cell 

18 

NKAβ1 enhances somatostatin-induced NKA currents, increases action potential 

19 

afterhyperpolarization amplitude, and accelerates action potential frequency. Loss of NKAβ1 

20 

delays glucose-stimulated Ca

2+

 entry by impairing glycolysis-dependent NKA activation and 

21 

reduces Na

+

 clearance efficiency during Ca

2+

 oscillations, resulting in prolonged silent phases. 

22 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

Thus, glycolytic stimulation of Na

+

 influx dictates silent phase duration via the kinetics of Na

+

 

23 

clearance by NKA, which is diminished in β-cells without NKAβ1. Furthermore, NKAβ1 

24 

differentially modulates β-cell G protein-coupled receptor (GPCR) signaling by attenuating G

i

-

25 

GPCR effects and augmenting G

s

-coupled GLP-1 receptor-mediated cAMP production and Ca

2+

 

26 

entry. NKAβ1

βKD 

in human pseudoislets led to tonically elevated intracellular Ca

2+

 and increased 

27 

insulin secretion. These findings establish NKAβ1-containing NKA complexes as critical 

28 

regulators of β-cell electrical activity, Ca

2+

 oscillations, and secretory patterns, with direct 

29 

consequences for systemic glucose homeostasis.

 

30 

 

31 

 

32 

 

33 

 

34 

 

35 

 

36 

 

37 

 

38 

 

39 

 

40 

 

41 

 

42 

 

43 

 

44 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

1. Introduction

 

45 

Pancreatic β-cell insulin secretion is coordinated by tightly regulated ion fluxes that translate 

46 

metabolic signals into electrical excitability [1–3]. Electrogenic Na⁺/K⁺-ATPases (NKAs) are 

47 

essential for maintaining β-cell ionic homeostasis and establishing the resting membrane 

48 

potential (

V

m

) [4–6]. For each ATP hydrolyzed by NKA three Na

+

 ions are pumped out and two K⁺ 

49 

ions are pumped in, leading to a net outflow of positive charge that hyperpolarizes β-cell 

V

m

50 

The activity of other ion channels and transporters that control β-cell excitability and insulin 

51 

secretion are also indirectly affected by NKA control of Na

+

 and K

+

 levels including ATP-sensitive 

52 

K

+

 (K

ATP

) channels, voltage-gated Ca²⁺ channels (Ca

v

), and ion transporters [7–15]. The core 

53 

functional NKA protein complex contains a catalytic α-subunit, an auxiliary β-subunit, and in 

54 

some cases a tissue-specific regulatory γ-subunit (FXYD protein). Core NKA complexes are 

55 

capable of forming further homo- and hetero-dimeric assemblies, which display enhanced 

56 

functionality [16,17]. Mouse and human β-cells primarily express NKAα1 subunits (encoded by 

57 

ATP1A1

) and NKAβ1 subunits (encoded by 

ATP1B1

), although NKAβ2 and NKAβ3 are also 

58 

expressed at lower levels [18–20]. While NKAα1 consumes ATP to drive Na⁺ efflux and K⁺ influx, 

59 

NKA holoenzyme plasma membrane trafficking and enzymatic activity are tightly regulated by 

60 

NKAβ1 [4–6]. However, despite the importance of NKAβ1 to NKA function, its contribution to β-

61 

cell physiology remains unexplored.  

 

62 

 

NKAβ1 is a type II membrane protein with a single transmembrane-spanning segment, a 

63 

small N-terminal cytosolic region, and a large C-terminal extracellular domain [4–6]. The 

64 

extracellular domain of NKAβ1 displays extensive N-linked glycosylation in both mice and 

65 

humans [21–23]. Glycosylation of NKAβ1 directly affects NKA structure and function and also 

66 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

promotes intercellular adherens junction formation through interactions with E-cadherins and 

67 

other NKAβ1 proteins [21,22,24]. E-cadherin-based intercellular bridges play an important role 

68 

in facilitating glucose-stimulated insulin secretion (GSIS) in rodent and human β-cells [25–27]. 

69 

Furthermore, potentiators of insulin secretion (e.g., glucose, cAMP) enhance E-cadherin-based 

70 

junction formation in rat β-cells [26]. Interestingly, adherens junctions are located in lateral 

71 

zones between β-cells along with glucose transporters, suggesting tight coupling between 

72 

glucose sensing and NKA activity [27,28]. 

 

73 

 

All NKA β-subunit isoforms contain three conserved disulfide bonds in the extracellular 

74 

domain that are essential for interactions with the NKA α-subunit [5]. NKAβ1 has a seventh 

75 

cysteine (C46) located in the transmembrane domain, which undergoes oxidative 

76 

glutathionylation; C46 is also a single amino acid away from the NKAβ1 residue that forms a 

77 

hydrogen bond with NKAα1 [29]. NKAβ1 C46 is glutathionylated by NADPH oxidase in a PKC-

78 

dependent manner during the E2 (outward facing; low Na

+

 affinity) to E1 (inward facing; high 

79 

Na

+

 affinity) conformational change of the NKA holoenzyme [29]. This post-translational 

80 

modification decreases NKA activity by weakening the association between NKAβ1 and NKAα1 

81 

and by augmenting intracellular K

+

-mediated inhibition of the E2 to E1 conformational change.  

82 

Removal of basal C46 glutathionylation by enzymes such as glutaredoxin (Grx) and glutathione 

83 

reductase (GSR) may conversely increase the NKAα1 binding affinity of NKAβ1 and promote 

84 

plasma membrane NKA activity [29].

 

85 

NKA control of cation handling is essential for β-cell function and survival. The net 

86 

outflow of positive charge generated by NKA activity mediates β-cell 

V

m

 hyperpolarization. 

87 

Active NKAs also return elevated Na

+

 levels resulting from Na

+

 influx through voltage-dependent 

88 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

Na

+

 (Na

v

) channels and Ca

2+

-dependent Na

+

-permeable transient receptor potential melastatin 

89 

(TRPM) 4/5 channels during Ca

2+

 oscillations to basal levels. This electrogenic process is 

90 

governed by the kinetic parameters of β-cell NKA (e.g., V

max

- maximum rate of Na

+

/K

+

 transfer; 

91 

K

1/2

- substrate concentration where NKA operates at half of V

max

; K

a,Na

+

 and K

a,K

+

- affinity 

92 

constants reflecting how strongly NKA binds Na

+

 and K

+

), which are tuned by NKA subunit 

93 

composition; particularly by the high ion affinity NKAβ1 subunit [30,31]. Moreover, NKAβ1 

94 

promotes NKA trafficking to and retention in the plasma membrane [32,33]. Thus, the 

95 

predominance of the NKAβ1 subunit in β-cells ensures robust Na

+

 clearance as well as rapid and 

96 

efficient 

V

m

 hyperpolarization following Ca

2+

 oscillation termination. 

 

97 

Interestingly, β-cell 

Atp1b1

 mRNA expression decreases rapidly (within six hours) 

98 

following exposure to inflammatory cytokines (i.e., IFN-γ and IL-1β), suggesting a possible link 

99 

between NKA activity and β-cell dysfunction [34]. Partial NKA inhibition with cardiac glycosides 

100 

(e.g. ouabain), and presumably NKAβ1 deficiency, decreases pump activity at the plasma 

101 

membrane, leading to elongated silent phases [35,36]. This is a consequence of NKA being 

102 

required to remain active longer to restore intracellular ion homeostasis before initiation of the 

103 

subsequent Ca

2+

 oscillation. Elevated basal Na⁺ levels under these conditions may also impede 

104 

Ca

2+

 extrusion through the Na

+

/Ca

2+

 exchanger (NCX) and/or deplete mitochondria Ca

2+

 by 

105 

stimulating mitochondrial Na

+

/Ca

2+

 exchanger (NCLX) activity, which could impair metabolic 

106 

function [7,37]. Reduced ATP availability would lead to increased ATP-sensitive K

+

 (K

ATP

) channel 

107 

activity as well as decreased sarcoplasmic/endoplasmic reticulum Ca

2+

-ATPase (SERCA) and 

108 

plasma membrane Ca

2+

-ATPase (PMCA) activity, all of which could further disrupt β-cell Ca

2+

 

109 

handling [38–40].

 

110 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

β-cell NKA activity is regulated by a range of receptor-mediated processes. For example, 

111 

inhibitory (G

i

-) G protein-coupled receptors (GPCRs) such as somatostatin receptors (SSTRs) and 

112 

α2-adrenergic receptors (α2-ADRs) activate β-cell NKA through Src kinase (Src)-dependent 

113 

phosphorylation of NKAα1 tyrosine 10 (Y10) [41–43]. NKAα1 Y10 can also be directly 

114 

phosphorylated via receptor tyrosine kinases including insulin receptors (IRs) and epidermal 

115 

growth factor receptors (EGFRs) [41,44,45]. Whereas stimulatory (G

s

-) GPCRs including 

116 

glucagon-like peptide-1 receptors (GLP-1Rs) inhibit β-cell NKA via cAMP-dependent protein 

117 

kinase A (PKA)-mediated phosphorylation of serine 943 (S943) [41,46]. NKAβ1 interacts with 

118 

GLP-1Rs in mouse insulinoma cells [47], which suggests that GLP-1R-mediated elevations in β-

119 

cell Ca

2+

 are regulated by local cAMP production near NKA. Indeed, β-cell cAMP oscillations are 

120 

paralleled by fluctuations in NKA activity, demonstrating the importance of PKA control of NKA 

121 

function [41]. Interestingly, in the presence of GLP-1, GLP-1Rs form a complex with β-arrestin1 

122 

and Src [48]. Formation of this complex with NKA may facilitate Src phosphorylation and/or 

123 

regulate NKA recycling [48,49]. However, it remains to be determined whether NKAβ1-GLP-1R 

124 

interactions influence β-cell function. 

 

125 

Here, we demonstrate that NKAβ1 modulation of NKA function is key to maintenance of 

126 

β-cell ionic homeostasis and regulation of insulin secretion. Genetic ablation of NKAβ1 

127 

decreases the magnitude of somatostatin-activated, ouabain-sensitive β-cell NKA currents. 

128 

Diminished NKA activity in NKAβ1KO β-cells leads to cytosolic accumulation of Na

+

 and ATP and 

129 

results in extended periods of NKA activity in response to glucose stimulation and G

i

-GPCR 

130 

signaling. Furthermore, G

s

-GPCR-mediated β-cell NKA inhibition is attenuated, which may be 

131 

due to disruption of interactions between NKAβ1 and GLP-1Rs. Importantly, β-cell NKAβ1 

132 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

knockout enhances islet GSIS, resulting in improved glucose tolerance and insulin sensitivity 

in 

133 

vivo

. Together, these findings illuminate the importance of NKAβ1 in controlling β-cell electrical 

134 

excitability, Ca

2+

 handling, and insulin secretion.

 

135 

 

136 

2. Materials and methods

 

137 

2.1. Chemicals and reagents

 

138 

Unless otherwise noted all chemicals and reagents were purchased from Sigma-Aldrich (St. 

139 

Louis, MO) or Thermo Fisher (Waltham, MA). Clonidine hydrochloride (Clon), forskolin (Fsk), and 

140 

ouabain (Oua) were purchased from R&D Systems (Minneapolis, MN). Liraglutide (Lira) was 

141 

purchased from Novo Nordisk (Plainsboro, NJ). α-ketoisocaproic acid was purchased from 

142 

Cayman Chemical (Ann Arbor, MI). Diazoxide was purchased from TCI America (Portland, OR). 

143 

miR30-based adenoviral constructs expressing an mCherry fluorescent tag along with shRNAs 

144 

targeting human ATP1B1 mRNA (hATP1B1 shRNA 1: TGCTCACCATCAGTGAATTTAA, hATP1B1 

145 

shRNA 2: TACGTATGGGACCTACACTTAA, and hATP1B1 shRNA 3: AAGTTGGAAATGTGGAGTATTT; 

146 

Vector ID: VB220630-1580pgt; VectorBuilder, Chicago, IL) or scramble shRNAs with no human 

147 

mRNA target (scramble shRNA (3x): ACCTAAGGTTAAGTCGCCCTCG; Vector ID: VB220516-

148 

1177dyr; VectorBuilder) were generated.

 

149 

 

150 

2.2. Animals

 

151 

All mice were 8- to 16-week-old, age-matched males on a mixed C57Bl6/J (Stock #: 000664, The 

152 

Jackson Laboratory (JAX), Bar Harbor, ME), 129S1/SvImJ (Stock #: 002448, JAX) background. 

153 

Transgenic mice with β-cell-specific knockout of 

Atp1b1

 (gene encoding NKAβ1; NKAβ1

Δ

β

) were 

154 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

generated by crossing animals with a loxP-flanked 

Atp1b1

 exon 4 (129S-Atp1b1

tm1.1Zboro

/J, Stock 

155 

#: 029525, JAX)[50] with mice expressing an Ins1cre (B6(Cg)-Ins1

tm1.1(cre)Thor

/J; Stock #: 026801; 

156 

JAX)[51]. All animals were housed in a Vanderbilt University IACUC (protocol # M2200007-00) 

157 

approved facility on a 12-hour light/dark cycle with 

ad libitum

 access to standard chow (Lab 

158 

Diets, 5L0D). Mice were humanely euthanized by cervical dislocation followed by 

159 

exsanguination. To preserve islet ion channel function mice were not treated with anesthesia.

 

160 

 

161 

2.3. Human Donors

 

162 

All studies detailed here were approved by the Vanderbilt University Health Sciences Committee 

163 

Institutional Review Board (IRB# 110164). Healthy human islets were provided from multiple 

164 

isolation centers by the Integrated Islet Distribution Program (IIDP). Deidentified human donor 

165 

information is provided in Table 1. The IIDP obtained informed consent for deceased donors in 

166 

accordance with NIH guidelines prior to reception of human islets for our studies. The 

167 

deidentified healthy human pancreas samples stained in Fig. 1 were obtained from the NCI 

168 

funded Cooperative Human Tissue Network (CHTN) (https:// www. chtn.org/). Written consent 

169 

was obtained for deceased donors by the CHTN prior to reception of human pancreatic tissue.

 

170 

 

171 

2.4. Islet isolation and culture

 

172 

Mouse pancreata were digested with collagenase P (Roche; Basel, Switzerland) and islets were 

173 

isolated using density gradient centrifugation [52–54]; mouse islets were cultured in RPMI-1640

 

174 

(Corning) media with 5.6 mM glucose supplemented with 15% FBS, 100 IU/mL penicillin, and 

175 

100 mg/mL streptomycin (RPMI) at 37 °C, 5% CO

2

. Islets were cultured in polymer-coated 35 

176 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

mm glass-bottomed dishes (CellVis, Mountain View, CA) that had been treated with 10 µL/mL 

177 

murine extracellular matrix (ECM) extract and 20 µL/mL bovine plasma fibronectin for 1 hour at 

178 

37 °C. All experiments were completed within 48 hours of islet isolation.

 

179 

 

180 

2.5. Human pseudoislet production

 

181 

Upon arrival, human islets were allowed to recover for at least 2 hours in CMRL-1066 (Corning, 

182 

Cleveland, TN) media containing 5.6 mM glucose and supplemented with 20% fetal bovine 

183 

serum (FBS), 100 IU/mL penicillin, 100 mg/mL streptomycin, 2 mM Gluta-MAX, 2 mM HEPES, 

184 

and 1 mM sodium pyruvate (CMRL) at 37 °C, 5% CO

2

. Human pseudoislets were prepared as 

185 

previously described [55]. Briefly, human islets were washed with Versene, dispersed with 

186 

TrypLE Express, and washed with magnetic-activated cell sorting (MACS) buffer (PBS 

187 

supplemented with 0.5% FBS, 100 IU/mL penicillin, and 100 mg/mL streptomycin). To selectively 

188 

label human β-cells, the dispersed islet cells were combined with 5 µg/mL mouse anti-human 

189 

NTPDase3 antibody (CHU de Quebec-Universite Laval, Quebec, Canada) in MACS buffer then 

190 

rotated at 4 °C for 30 minutes. Antibody-labeled islet cells were washed twice with MACS buffer 

191 

and incubated with anti-mouse IgG2a+b conjugated magnetic microbeads (catalog #: 130-047-

192 

202; Miltenyi Biotec, Gaithersburg, MD) at 4 °C for 15 minutes. Microbead-antibody-islet cell 

193 

complexes were washed twice with MACS buffer to remove unbound microbeads then 

194 

microbead-labeled β-cells were collected utilizing LS columns (catalog #: 130-042-401; Miltenyi 

195 

Biotec) and a QuadroMACS™ Seperator (catalog #: 130-091-051; Miltenyi Biotec); the unbound 

196 

non-β-cell fraction was also collected. The β-cell fraction was transduced with hATP1B1 or 

197 

scramble shRNA adenoviruses for 2 hours at 37 °C, washed twice with pre-warmed CMRL, 

198 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

combined at a ratio of 60:40 with untransduced non-β-cells in 96 well EZSPHERE microplates 

199 

(catalog #: AG4860-900SP; AGC Techno Glass, Japan), and cultured 5 days at 37 °C, 5% CO

2

200 

Samples were supplemented with fresh pre-warmed CMRL every 48 hours. Some shRNA 

201 

transduced human β-cells were cultured in coated 35 mm glass-bottomed dishes for 

202 

intracellular Ca

2+

 imaging as described in section 2.4.

 

203 

 

204 

2.6. qRT-PCR

 

205 

Human β-cells were transduced for 2 hours with adenoviral shRNA constructs in non-coated 24 

206 

well plates and cultured in for 72 hours in CMRL supplemented with 5.6 mM glucose at 37 °C, 

207 

5% CO

2

. Total RNA was isolated from the shRNA transduced human β-cells utilizing RNeasy 

208 

Micro kits (catalog #: 74004; Qiagen, Ann Arbor, MI) as per manufacturer’s instructions. cDNA 

209 

was prepared using iScript cDNA synthesis kits (catalog #: 1708891; Bio-Rad) according to 

210 

manufacturer’s instructions. Quantitative real-time PCR reactions were performed on a CFX 

211 

Opus 96 Real-Time PCR system (Bio-Rad) utilizing iTaq™ Universal SYBR® Green supermix 

212 

(catalog #: 172-5120; Bio-Rad) and primers specific to human 

ATP1B1

 (forward: 

213 

CCCAAATGTCCTTCCCGTTCAG; reverse: GCAGGAGTTTGCCATAGTACGG), 

ATP1A1

 (forward: 

214 

GGCAGTGTTTCAGGCTAACCAG; reverse: TCTCCTTCACGGAACCACAGCA), and 

GAPDH

 (forward: 

215 

GTCTCCTCTGACTTCAACAGCG; reverse: ACCACCCTGTTGCTGTAGCCAA). 

ATP1B1

 and 

ATP1A1

 

216 

mRNA expression relative to 

GAPDH

 was calculated using the 2

-ΔΔCT

 method and normalized to 

217 

expression in human β-cells transduced with scramble shRNAs [56].

 

218 

 

219 

2.7. Immunofluorescence imaging

 

220 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

Paraffin-embedded human pancreas sections were processed and probed as previously 

221 

described [57]. Following rehydration, tissue sections were subjected to heat-induced epitope 

222 

retrieval at 100 °C for 12 min. Pancreas sections were stained with primary antibodies (1:100 

223 

rabbit anti-ATP1B1 (catalog #: 15192-1-AP; Proteintech, Rosemont, IL), 1:1000 guinea pig anti-

224 

insulin (catalog #: 20-IP35; Fitzgerald, North Acton, MA), and 1:200 rabbit anti-glucagon (catalog 

225 

#: 2760S; Cell Signaling Technology, Davers, MA),  followed by secondary antibodies (1:500 

226 

donkey anti-mouse Alexa Fluor 647 (catalog #: 715-606-150; Jackson ImmunoResearch, West 

227 

Grove, PA), 1:500 donkey anti-guinea pig Alexa Fluor 488 (catalog #: 706-546-148; Jackson 

228 

ImmunoResearch), and 1:500 donkey anti-rabbit Alexa Fluor 550 (catalog #: 711-166-152; 

229 

Jackson ImmunoResearch)). Immunofluorescence images were collected with a Zeiss LSM 710 

230 

META inverted confocal microscope (x40 magnification).

 

231 

 

232 

2.8. NKAβ1 immunoblotting

 

233 

Mouse islets were isolated, lysed on ice in RIPA buffer supplemented with 20 μL/mL Halt 

234 

protease/phosphatase inhibitor cocktail (catalog #: PI78442; Thermo Fisher) and islet cell lysates 

235 

were resolved on a nitrocellulose membrane. Immunoblots were blocked for 1 h in phosphate-

236 

buffered saline with 0.1% Tween 20 (PBST) supplemented with 3% powdered milk (blocking 

237 

solution). All primary and secondary antibodies were diluted in blocking solution. Immunoblots 

238 

were probed with 1:500 mouse anti-ATP1B1 primary (catalog #: MA3-928; Thermo Fisher) 

239 

followed by 1:2500 goat anti-mouse HRP-conjugated secondary (catalog #: W4021; Promega, 

240 

Madison, WI). ATP1B1 protein bands were visualized with SuperSignal™ West Pico Plus utilizing 

241 

a Bio-Rad Digital ChemiDoc MP (ChemiDoc). Immunoblots were stripped with Restore™ 

242 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

Western Blot Stripping Buffer and reprobed with 1:1000 anti-GAPDH HRP-conjugated primary 

243 

(catalog #: MA5-15738-HRP; Thermo Fisher). Uncropped and unprocessed immunoblot scans 

244 

are displayed in Supplementary Fig. 1.

 

245 

 

246 

2.9 NKAβ1-GLP-1R coimmunoprecipitation

 

247 

Mouse islets were isolated and lysed on ice in RIPA buffer. Lysates were centrifuged at 12,000 

248 

rpm for 10 min at 4

˚

C to remove cell debris. 5 µg rabbit anti-ATP1B1 primary (Proteintech) was 

249 

added to the supernatant and incubated for 1 h at 4

˚

C, followed by addition of 40 µL protein 

250 

A/G magnetic beads (catalog #: PI88802; Pierce). The mixture was gently agitated overnight at 

251 

4

˚

C. The beads were washed three times with cold RIPA buffer, and bound proteins were eluted 

252 

for 45 min at room temperature under reducing conditions. Immunoprecipitated proteins were 

253 

resolved on a nitrocellulose membrane and probed as detailed in 2.8. Immunoblots were 

254 

probed with 1 µg/mL goat anti-GLP-1R primary (catalog #: GTX17606; GeneTex, Irvine, CA) 

255 

followed by 1:2500 donkey anti-goat HRP-conjugated secondary (catalog #: GTX232040-01; 

256 

GeneTex). Immunoblots were stripped and reprobed with 1:500 rabbit anti-ATP1B1 primary 

257 

(Proteintech) followed by 1:2500 goat anti-rabbit HRP-conjugated secondary. Uncropped and 

258 

unprocessed immunoblot scans are displayed in Supplementary Fig. 2.

 

259 

 

260 

2.10. Intraperitoneal glucose/pyruvate tolerance test

 

261 

Mice were fasted for 5 h before experiments. Dextrose (Hospira, Lake Forest, IL) was injected 

262 

intraperitoneally at a dose of 2.0 g/kg body weight; sodium pyruvate was dissolved in sterile 

263 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

saline and injected intraperitoneally at a dose of 2.0 g/kg body weight. Blood samples were 

264 

collected from the tail vein and blood glucose was measured using an Aimstrip Plus glucometer.

 

265 

 

266 

2.11. Dynamic insulin secretion assay

 

267 

Mouse islets were isolated and incubated overnight in RPMI supplemented with 5.6 mM 

268 

glucose and 0.5 mg/mL BSA at 37 °C and 5% CO

2

. Human pseudoislets were incubated overnight 

269 

in CMRL supplemented with 5.6 mM glucose and 0.5 mg/mL human albumin at 37 °C and 5% 

270 

CO

2

. Mouse islets and human pseudoislets were immobilized in a P-4 gel matrix (catalog #: 150-

271 

4124; Bio-Rad, Hercules, CA) inside BioRep perifusion chambers within the 37 °C temperature-

272 

controlled enclosure of a BioRep perifusion system. All chambers were perifused at a flow rate 

273 

of 120 µL/min with DMEM containing (mM) 0.5 CaCl

2

 and 10.0 HEPES supplemented with 10% 

274 

FBS and 0.5 mg/mL BSA (or human albumin for human pseudoislets). Perifusion solutions were 

275 

supplemented with glucose concentrations and treatments as described in figure legends. 

276 

Perfusates were collected in 96 well plates at 4 °C using a robotic fraction collector. Mouse islets 

277 

and human pseudoislets were recovered at the end of each experiment and total insulin was 

278 

extracted with 1.5% acid ethanol. Perfusate insulin secretion and total islet insulin were 

279 

measured with mouse insulin ELISAs (catalog #: 12-12470-10; Mercodia, Winston-Salem, NC).

 

280 

 

281 

2.12. Patch-clamp electrophysiology

 

282 

Patch electrodes (8-20 MΩ; 10 mV test pulse) were backfilled with intracellular solution 

283 

containing (mM) 90.0 KCl, 50.0 NaCl, 1.0 MgCl

2

, 10.0 EGTA, 10.0 HEPES, and 0.005 amphotericin 

284 

B (adjusted to pH 7.2 with KOH). Mouse islets were patched in Krebs-Ringer HEPES buffer (2 mL; 

285 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

KRHB) containing (mM) 119.0 NaCl, 4.7 KCl, 2.0 CaCl

2

, 1.2 MgSO

4

, 1.2 KH

2

PO

4

, and 10.0 HEPES 

286 

(pH 7.35 adjusted by NaOH) supplemented with indicated glucose concentrations; a perforated 

287 

whole-cell patch-clamp technique was utilized to record β-cell membrane potential (

V

m

) in 

288 

current-clamp mode using an Axopatch 200B amplifier with pCLAMP10 software (Molecular 

289 

Devices). Islet cells that did not display electrical activity at 2 mM glucose (G) were identified as 

290 

β-cells. After a perforated patch configuration was established (seal resistance >1.0 GΩ; leak< 

291 

20.0pA) 

V

m

 depolarization and action potential (AP) firing were induced by exchanging the bath 

292 

solution with KRHB supplemented with 20 mM glucose and 1 mM tolbutamide (Tolb). After AP 

293 

firing was observed, the amplifier was switched to voltage-clamp mode; 

V

m

 was held at −60 mV 

294 

and the membrane voltage was ramped from −100 mV to −50 mV every 15 s for at least 3 min 

295 

and the resulting β-cell currents recorded. The amplifier was then returned to current-clamp 

296 

mode and 

V

m

 was recorded. Mouse islets were perifused with indicated treatments and 

297 

changes in β-cell 

V

m

 and currents measured as specified in figure legends.

 

298 

 

299 

2.13. Intracellular Ca

2+

 and Na

+

 imaging

 

300 

For intracellular Ca

2+

 imaging, mouse islets and human β-cells were loaded with a ratiometric 

301 

Fura-2 AM Ca

2+

 indicator (2 μM) for 20 min prior to the start of an experiment at 37 °C, 5% CO

2

302 

For intracellular Na

+

 imaging, mouse islets were loaded with a ratiometric SBFI AM Na

+

 indicator 

303 

(50 µM) for 1 hour before beginning an experiment at 37 °C, 5% CO

2

. Before each experiment, 

304 

culture media was replaced with KRHB supplemented with indicated glucose concentrations 

305 

and treatments; after 10 min, the mouse islets and human β-cells were treated as detailed in 

306 

figure legends. Fura-2 AM and SBFI AM fluorescence (Ex: 340 nm and 380 nm; Em: 510 nm) 

307 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

were measured every 5 sec with a Nikon Ti2 epifluorescence microscope equipped with a Prime 

308 

95B camera with a 25 mm CMOS sensor and Nikon Elements software (x10 magnification; Nikon 

309 

Ti2); the ratios of Fura-2 AM and SBFI AM fluorescence excited at 340 nm and 380 nm were 

310 

utilized as indicators of intracellular Ca

2+

 and Na

+

 respectively.

 

311 

 

312 

2.14. Intracellular ATP:ADP ratio and cAMP imaging

 

313 

Immediately following isolation, mouse islets were transduced for 2 hours with an adenoviral 

314 

vector encoding a ratiometric Perceval HR ATP:ADP ratio indicator [58] or overnight with a 

315 

baculoviral vector encoding a cytosolic cADDis cAMP indicator (catalog #: U0200G; Montana 

316 

Molecular, Bozeman, MT) [59]. Islet culture media was replaced with KRHB supplemented with 

317 

the indicated glucose concentrations 10 min before each experiment; the islets were then 

318 

treated as indicated. Perceval HR fluorescence (Ex: 405 nm and 480 nm; Em: 510 nm) or cADDis 

319 

fluorescence (Ex: 480 nm; Em: 510 nm) were measured every 10 sec with a Nikon Ti2-E 

320 

microscope equipped with a Crest X-Light V3 spinning disk confocal system, an Andor Sona 

321 

sCMOS camera, and Nikon Elements AR software (x20 magnification; Nikon spinning disk). The 

322 

ratio of Perceval HR fluorescence excited at 480 nm and 405 nm was used as an indicator of 

323 

intracellular ATP:ADP ratio while cADDis fluorescence excited at 480 nm was employed as an 

324 

indicator of cytosolic cAMP.

 

325 

 

326 

2.15. Statistical analysis and modeling

 

327 

Islet intracellular Ca

2+

, Na

+

, ATP:ADP ratio, cAMP, and NKA immunofluorescence were analyzed 

328 

using Nikon Elements software and the ImageJ Fiji image processing pack. Axon Clampfit 

329 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

software was utilized to quantify β-cell NKA currents and 

V

m

. Islet Ca

2+

 plateau fraction was 

330 

defined as the fraction of time during which islet Ca

2+

 was ≥50% of islet Ca

2+

 oscillation 

331 

amplitude. Islet Ca

2+

 influx as well as islet ATP:ADP ratio increases were modeled with a 

332 

logarithmic variable slope (4 parameter) equation (1).

 

333 

𝐼𝑠𝑙𝑒𝑡 [𝐶𝑎

2+

] 𝑜𝑟 [𝐴𝑇𝑃: 𝐴𝐷𝑃 𝑟𝑎𝑡𝑖𝑜] 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑀𝑖𝑛 +

(𝑀𝑎𝑥 − 𝑀𝑖𝑛) × 𝑇𝑖𝑚𝑒

𝐾

𝐸𝐶

50

𝐾

+ 𝑇𝑖𝑚𝑒

𝐾

(1)

 

334 

Islet ATP:ADP ratio decreases were modeled with a logarithmic variable slope (4 parameter) 

335 

equation (2).

 

336 

𝐼𝑠𝑙𝑒𝑡 [𝐴𝑇𝑃: 𝐴𝐷𝑃 𝑟𝑎𝑡𝑖𝑜] 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 =   𝑀𝑖𝑛 +  

𝑀𝑎𝑥 − 𝑀𝑖𝑛

(

𝐼𝐶

50

𝑇𝑖𝑚𝑒

)

𝐾

+ 1

 (2)

 

337 

Islet Na

+

 decreases were modeled with a one-phase exponential decay equation (3).

 

338 

𝐼𝑠𝑙𝑒𝑡 [𝑁𝑎

+

] 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑀𝑎𝑥 + ([𝑁𝑎

+

]

0

− 𝑚𝑎𝑥) × 𝑒𝑥𝑝

(−𝐾×𝑇𝑖𝑚𝑒)

 (3) 

 

339 

Immunoblots were analyzed using Bio-Rad Image Lab 5.0. Figures were prepared utilizing Adobe 

340 

Illustrator. Statistical analyses were carried out utilizing Microsoft Excel and GraphPad Prism 

341 

9.2.0 as indicated in figure legends; data were compared utilizing paired or unpaired two-

342 

sample t-tests, one-sample t-tests, or two-way analysis of variance (ANOVA) with Šidák’s post-

343 

hoc multiple comparisons tests. Data were normalized when appropriate as indicated in figure 

344 

legends. Unless stated otherwise, data are presented as mean values ± standard error (SEM) for 

345 

the specified number of samples (

n

). Differences were considered significant for 

P

 ≤ 0.05.

 

346 

 

347 

3. Results

 

348 

3.1. NKAβ1 is expressed in mouse and human β-cells

 

349 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

To assess islet NKAβ1 protein expression, mouse and human pancreas sections were stained for 

350 

insulin, glucagon, and NKAβ1. In both α- and β-cells, as well as in other islet cell types, NKAβ1 

351 

was expressed predominantly at the plasma membrane (Fig. 1A, 1B). NKAβ1 was not detected 

352 

in surrounding acinar cells; however, staining was observed in a subpopulation of exocrine cells. 

353 

The staining pattern of these exocrine cells closely resembled that of cytokeratin 19 in 

354 

pancreatic ductal cells [60], although further characterization is necessary to definitively 

355 

establish their identity. NKAβ1

Δ

β

 pancreas tissue was then stained to confirm β-cell-specific 

356 

ablation of NKAβ1. NKAβ1 staining was undetectable in most β-cells, whereas strong plasma 

357 

membrane expression persisted in α-cells and other non-β-cell islet cells (Fig. 1C). 

358 

Immunoblotting of Ins1cre control islet lysates revealed a prominent band near the expected 

359 

molecular weight of NKAβ1 (~35 kDa; Fig. 1D). Band intensity was markedly decreased in lysates 

360 

from NKAβ1

Δ

β

 islets, confirming efficient β-cell 

Atp1b1

 deletion (Fig. 1D). The residual signal 

361 

from NKAβ1

Δ

β

 islets is attributable to NKAβ1 expression in α-cells and other non-β-cells within 

362 

the islet. 

 

363 

 

364 

3.2. NKAβ1 limits mouse β-cell glucose-stimulated insulin secretion

 

365 

To examine the 

in vivo

 effects β-cell NKAβ1 knockout, blood glucose levels in NKAβ1

Δ

β

 and 

366 

Atp1b1

(fl/fl) littermate control mice were measured during intraperitoneal glucose tolerance 

367 

tests (IPGTTs). Glucose excursions were attenuated in NKAβ1

Δ

β

 mice compared to controls (Fig. 

368 

1E; -47.9 ± 11.2% AUC from t = 0-60 min; 

= 0.008), suggesting increased glucose-stimulated 

369 

insulin secretion (GSIS) and/or enhanced peripheral insulin sensitivity. To evaluate insulin 

370 

sensitivity, hepatic gluconeogenesis was measured utilizing intraperitoneal pyruvate tolerance 

371 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

tests (IPPTTs) [61]. Because hepatic gluconeogenesis is inhibited by insulin signaling [62], 

372 

reduced blood glucose excursions in NKAβ1

Δ

β

 mice following IPPTTs indicate improved hepatic 

373 

insulin sensitivity (Fig. 1F; -49.1 ± 8.5% AUC from t = 0-60 min; 

= 0.006). Next, dynamic GSIS 

374 

from isolated NKAβ1

Δ

β

 and age-matched Ins1cre control islets was measured to determine the 

375 

impact of NKAβ1 ablation on β-cell secretory function. First-phase GSIS (5-10 min) from 

376 

NKAβ1

Δ

β

 islets increased modestly (Fig. 1G, 1H; 10.1 ± 2.3 µg/L at t = 8 min, 

= 0.011; 5.7 ± 1.7 

377 

at t = 9 min, 

= 0.029; 1.6 ± 0.5 at t = 10 min, 

= 0.041), whereas second-phase GSIS (13-20 

378 

min) more than doubled (Fig. 1G, 1H; 240.0 ± 60.5% AUC from t = 13-20 min, 

= 0.014). Insulin 

379 

secretion in response to KCl-mediated depolarization was indistinguishable between NKAβ1

Δ

β

 

380 

and control islets, suggesting that altered insulin secretion is due to effects on β-cell 

V

(Fg. 1G, 

381 

1H). Total insulin content was equivalent in NKAβ1

Δ

β

 and control islets, indicating that insulin 

382 

biosynthesis and processing are likely unaffected (Fig. 1I). 

 

383 

 

384 

3.3.

 

NKAβ1 expression enhances somatostatin-induced β-cell NKA currents

 

385 

Knockout of β-cell NKAβ1 enhanced islet GSIS but did not alter depolarization-induced insulin 

386 

secretion, suggesting that NKAβ1 may limit secretion by promoting NKA-mediated β-cell 

V

m

 

387 

hyperpolarization. To test this, we explored the impact of NKAβ1 on β-cell electrical excitability 

388 

and NKA currents. NKAβ1

Δ

β

 and control β-cell 

V

m

 were similar under basal (2 mM glucose) and 

389 

stimulatory conditions (20 mM glucose with 1 mM tolbutamide (Tolb); Fig. 2A-2C). Furthermore, 

390 

NKA activation with 200 nM somatostatin (SST) induced hyperpolarization, and NKA inhibition 

391 

with 200 µM ouabain (Oua) caused depolarization, to the same extent in both genotypes (Fig. 

392 

2A-2C). Under stimulatory conditions, NKAβ1

Δ

β

 β-cell Oua-sensitive currents were reduced (-4.4 

393 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

± 2.0 pA at -75 mV, 

= 0.043; Fig. 2D). SST-induced NKA activation increased the difference in 

394 

Oua-sensitive currents between NKAβ1

Δ

β

 and control β-cells (8.5 ± 3.5 pA between -100 and -50 

395 

mV, 

= 0.027; Fig. 2E). Key parameters defining β-cell action potential (AP) shape were also 

396 

quantified (Fig. 2F-2K). Under stimulatory conditions, NKAβ1

Δ

β

 β-cells displayed reduced 

397 

afterhyperpolarization (AHP) amplitude (-0.8 ± 0.4 pA, 

= 0.027; Fig. 2G) and slower 

398 

instantaneous AP frequency (-0.8 ± 0.3 Hz, 

= 0.013; Fig. 2J). These NKAβ1-dependent effects 

399 

were abolished when NKA was inhibited with Oua. In control β-cells, Oua-mediated NKA 

400 

inhibition diminished AP amplitude (-2.7 ± 1.1 mV; 

= 0.027; Fig. 2F) and AHP amplitude (-0.7 ± 

401 

0.1 mV; 

< 0.0001; Fig. 2G), decelerated AP upstroke (-0.4 ± 0.1 mV/ms; 

= 0.001; Fig. 2H) and 

402 

downstroke (0.3 ± 0.1 mV/ms; 

= 0.046; Fig. 2I), decreased AP firing frequency (-1.1 ± 0.2 Hz; 

403 

< 0.0001; Fig. 2J), and prolonged intervals between APs (183.0 ± 70.0 ms; 

= 0.018; Fig. 2K), all 

404 

independently of NKAβ1. These findings indicate that NKAβ1 

a

) regulates SSTR-mediated 

405 

activation of β-cell NKA currents and 

b

) modulates β-cell AP kinetics during Ca

2+

 oscillations. 

 

406 

 

407 

3.4. NKAβ1 facilitates islet glucose-stimulated Ca

2+

 influx in a glycolysis-dependent manner

 

408 

As we have demonstrated that NKA activity regulates β-cell Ca

2+

 oscillations [41], we next 

409 

examined the impact of NKAβ1 on β-cell glucose-stimulated Ca

2+

 entry. Transient decreases in β-

410 

cell Ca

2+

 preceding glucose-stimulated Ca

2+

 influx are well-documented and are attributed to 

411 

uptake of cytosolic Ca

2+

 into the endoplasmic reticulum (ER) through sarco/endoplasmic 

412 

reticulum Ca

2+

 ATPases (SERCAs) [63]. In NKAβ1

Δ

β

 islets, the duration of these glucose-

413 

dependent Ca

2+

 decreases was prolonged (133.2 ± 48.6 seconds, 

< 0.0001; Fig. 3A, 3B), 

414 

suggesting that NKA activity also regulates β-cell Ca

2+

 handling while 

V

m

 is hyperpolarized. The 

415 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

NKA protein complex has been shown to interact with several glycolytic enzymes [64] and be 

416 

preferentially powered by glycolytic ATP [65]; therefore, to determine whether the delay in 

417 

glucose-stimulated Ca

2+

 entry into NKAβ1

Δ

β

 islets reflects altered glycolysis, β-cells were 

418 

stimulated with the non-glycolytic metabolic fuel, alpha-ketoisocaproate (α-KIC). Both NKAβ1

Δ

β

 

419 

and control islets exhibited near-instantaneous Ca

2+

 entry in response to α-KIC (Fig. 3A, 3B). 

420 

Substitution of α-KIC in place of glucose did not affect total Ca

2+

 influx (Fig. 3A, 3C) but 

421 

accelerated the rate of islet Ca

2+

 entry independently of NKAβ1 (386.3 ± 303.8% for NKAβ1

Δ

β

 

422 

islets; 

= 0.0013; 296.0 ± 154.4% for control islets; 

= 0.0069; Fig. 3A, 3D). These results 

423 

indicate that transient NKA activation fine-tunes the initiation of β-cell glucose-stimulated Ca

2+

 

424 

entry and suggest a role for NKAβ1 in coupling the pump to glycolytic ATP.

 

425 

 

426 

3.5. β-cell NKA complexes containing β1-subunits increase ATP consumption

 

427 

During glycolysis, ADP and phosphoenolpyruvate (PEP) are consumed by pyruvate kinases (PKs) 

428 

to generate pyruvate and ATP [66]. At low glucose, β-cell workload is modest, and ADP levels 

429 

can become a limiting substrate for glycolysis and mitochondrial metabolism. Because NKA 

430 

activity maintains β-cell 

V

m

 in a hyperpolarized state at low glucose, ATP consumption by the 

431 

pump could impact ADP availability and, consequently, β-cell metabolism. To test whether 

432 

NKAβ1 knockout delays glucose-stimulated Ca

2+

 entry by depleting β-cell ADP levels, islet 

433 

ATP:ADP ratio was measured. The ATP:ADP ratio in NKAβ1

Δ

β

 islets was elevated compared to 

434 

control islets at both low (2 mM; 45.1 ± 21.2%, 

= 0.0017; Fig. 3E, 3F) and high glucose (9 mM; 

435 

23.6 ± 22.5%, 

= 0.0012; Fig. 3E, 3F). Following glucose stimulation, the ATP:ADP ratio rose 

436 

rapidly in both genotypes, indicating that overall ATP generation and glycolysis remain intact. 

437 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

Moreover, rates of glucose-stimulated ATP generation (Fig. 3E, 3G), ATP consumption during 

438 

periods of high Ca

2+

 (Fig. 3E, 3H), and ATP depletion after mitochondrial uncoupling with FCCP 

439 

(Fig. 3E, 3I) were unchanged in NKAβ1

Δ

β

 islets. Together, these results establish that reduced 

440 

NKA activity in NKAβ1

Δ

β

 β-cells leads to ATP accumulation without impairing glucose-stimulated 

441 

ATP production. The data further support that glycolytic machinery remains functional in 

442 

NKAβ1

Δ

β

 β-cells and reinforce that NKAβ1 modulates the preferential use of glycolytically 

443 

derived ATP by the pump.

 

444 

 

445 

3.6.

  

NKAβ1 promotes efficient β-cell Na

+

 removal

 

446 

Glucose stimulation of islets in the presence of the K

ATP

 channel blocker Tolb transiently 

447 

prevents β-cell Ca

2+

 entry in an NKA-dependent manner [41,67]. Thus, we next set out to 

448 

determine how NKAβ1 affects NKA-mediated inhibition of Ca

2+

 entry. NKAβ1

Δ

β

 islets displayed 

449 

prolonged suppression of glucose-stimulated Ca

2+

 influx (216.6 ± 91.9 seconds, 

= 0.011; Fig. 

450 

4A, 4B). Substituting α-KIC in place of glucose greatly diminished the magnitude of NKA-

451 

mediated β-cell Ca

2+

 decreases in both NKAβ1

Δ

β

 (330.5 ± 99.5% AUC, 

= 0.0005; Fig. 4C, 4D) 

452 

and control islets (189.6 ± 59.6% AUC, 

< 0.0001; Fig. 4C, 4D), further indicating that β-cell 

453 

NKAs are preferentially fueled by glycolytic metabolism. Sodium entry through Na

v

 and 

454 

TRPM4/5 channels contributes to β-cell 

V

m

 depolarization during glucose-stimulated Ca

2+

 

455 

oscillations [68,69], and subsequent NKA activation serves as the primary mechanism for 

456 

clearing accumulated Na

+

, facilitating 

V

m

 hyperpolarization and termination of Ca

2+

 influx. To 

457 

investigate the influence of NKAβ1 on β-cell Na

+

 handling, islets were stimulated with glucose in 

458 

the presence of the K

ATP

 channel activator diazoxide to clamp 

V

m

 in a hyperpolarized state and 

459 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

prevent activation of non-NKA Na

+

 conductances. Intracellular Na

+

 was elevated in NKAβ1

Δ

β

 

460 

islets compared to controls at both 2 mM (83.0 ± 40.2%, 

= 0.0117; Fig. 4E, 4F) and 11 mM 

461 

glucose (623.8 ± 398.8%, 

= 0.0083; Fig. 4E, 4F). Kinetic modelling of Na

+

 efflux using a one-

462 

phase exponential decay equation revealed decelerated Na

+

 clearance in NKAβ1

Δ

β

 islets (rate 

463 

constant (K) = -47.8 ± 9.4%, 

= 0.0305; half-life = 89.8 ± 36.5%, 

= 0.0185; Fig. 4E, 4G, 4H). 

464 

These findings indicate that in NKAβ1 helps maintain low basal intracellular Na

+

 levels in β-cells 

465 

by promoting efficient Na

+

 extrusion. 

 

466 

 

467 

3.7.

  

β-cell NKAβ1 tunes inhibitory and stimulatory GPCR control of NKA activity

 

468 

In β-cells, the NKA complex interacts with and is activated by Src tyrosine kinase in a G

i

-GPCR-

469 

dependent manner (e.g., SSTRs, α2A-ADRs) [41]. Because NKAβ1 stabilizes the NKA complex at 

470 

the plasma membrane, its role in G

i

-GPCR regulation of β-cell NKA activity was examined. β-cell 

471 

Ca

2+

 plateau fraction, defined as the proportion of time that Ca²⁺ remains elevated during 

472 

glucose-stimulated oscillations, was lower in NKAβ1

Δ

β

 islets than in controls (-30.0 ± 7.0%, 

473 

0.0005; Fig. 5A, 5B). In the presence of 20 nM SST, the difference in Ca²⁺ plateau fraction 

474 

between NKAβ1

Δ

β

 and control islets increased further (-51.6 ± 13.0%, 

= 0.0003; Fig. 5A, 5B), 

475 

and SST mediated a larger reduction Ca

2+

 plateau fraction in NKAβ1

Δ

β

 than in control islets (31.0 

476 

± 17.3%, 

= 0.032; Fig. 5A, 5C). Calcium plateau fraction was also diminished in NKAβ1

Δ

β

 

477 

compared to control islets when G

i

-coupled α2-ADRs were activated with clonidine (-56.1 ± 

478 

8.5%, 

= 0.0069; Fig. 5D, 5E), suggesting that NKAβ1 broadly regulates islet G

i

 signaling across 

479 

β-cell G

i

-GPCRs. G

s

-coupled glucagon-like peptide-1 receptor (GLP-1R) signaling inhibits β-cell 

480 

NKA function in a protein kinase A (PKA)-dependent fashion, thereby enhancing glucose-

481 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

stimulated Ca

2+

 entry [41]. As NKAβ1 interacts with GLP-1Rs in MIN6 cells [47], we next tested 

482 

whether this interaction occurs in primary mouse islets. A protein band consistent with the 

483 

molecular weight of GLP-1R (~60 kDa) co-immunoprecipitated with NKAβ1 (Fig. 5F). In co-

484 

immunoprecipitated samples, NKAβ1 migrated at ~100 kDa (compared to ~35 kDa in freshly 

485 

prepared islet lysates). The apparent mass shift likely reflects differences in glycosylation or 

486 

multimerization arising from distinct sample processing conditions. Fresh lysates were boiled at 

487 

95 °C to ensure complete protein denaturation, whereas co-IP eluates were collected at room 

488 

temperature to minimize release of protein A/G that could obscure target protein bands. Next, 

489 

the influence of NKAβ1 on GLP-1R-mediated control of β-cell Ca

2+

 handling was examined. In 

490 

the presence of Tolb and 20 mM glucose, SST induced larger decreases in Ca

2+

 plateau fraction 

491 

in NKAβ1

Δ

β

 islets (18.3 ± 0.63%, 

= 0.042; Fig. 5G, 5H). Subsequent stimulation of GLP-1R 

492 

signaling with liraglutide increased Ca

2+

 plateau fraction more in control than in NKAβ1

Δ

β

 islets 

493 

(222.3 ± 88.7%, 

= 0.025; Fig. 5G, 5I). Measurement of β-cell cAMP levels using a fluorescent 

494 

cADDis indicator showed that NKAβ1 enhances liraglutide-mediated GLP-1R signaling (36.9 ± 

495 

7.5%, P = 0.0192; Fig. 5J, 5L), whereas pharmacological activation of adenylyl cyclases with 

496 

forskolin was unaffected (Fig. 5K, 5L). These results indicate that NKAβ1 promotes β-cell cAMP 

497 

production, potentially through a specific interaction with GLP-1R signaling.

 

498 

 

499 

3.8.

  

NKAβ1 regulates human β-cell glucose-stimulated Ca

2+

 entry and insulin secretion

 

500 

NKAβ1 is highly expressed in human islets [18,20]; therefore, its role in human β-cell Ca

2+

 

501 

handling and insulin secretion was evaluated. qRT-PCR analysis of 

ATP1B1

 and 

ATP1A1

 mRNA 

502 

expression in purified human β-cells confirmed efficient shRNA-mediated NKAβ1 knockdown (-

503 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

97.3 ± 1.2%, 

< 0.0001; NKAβ1

βKD

; Fig. 6A). Loss of NKAβ1 increased intracellular Ca

2+

 in 

504 

dispersed human β-cells at both low (2 mM; 3.5 ± 1.6%, 

= 0.0356; Fig. 6B, 6C) and elevated 

505 

(9mM; 6.0 ± 3.3%, 

= 0.006; Fig. 6B, 6C) glucose. NKAβ1

βKD

 β-cell Ca

2+

 was also elevated 

506 

following addition of 200 nM SST (3.5 ± 2.3%, 

= 0.0377; Fig. 6B, 6C). To assess effects on 

507 

insulin secretion, NKAβ1

βKD

 human pseudoislets were generated by reaggregating shRNA-

508 

transduced β-cells with untransduced islet cells (e.g., α- and δ-cells). NKAβ1

βKD

 pseudoislets 

509 

contained more insulin than scramble shRNA controls (79.0 ± 18.8%, 

< 0.0084; Fig. 6D), 

510 

suggesting altered secretion and/or synthesis. When secretion was normalized to insulin 

511 

content, NKAβ1

βKD

 pseudoislets exhibited reduced second-phase GSIS (11 mM glucose; t = 15-

512 

30 min; -53.5 ± 9.2%, 

= 0.011; Fig. 6E, 6F). Basal secretion (1 mM glucose), first-phase GSIS (11 

513 

mM glucose; t = 9-15 min), and depolarization-stimulated secretion (30 mM KCl; t = 72-81 min) 

514 

were unaffected. When normalized to pseudoislet number, NKAβ1

βKD

 increased first-phase GSIS 

515 

in four of the six biological replicates (Fig. 6G, 6H). Despite heterogeneity in GSIS and KCl 

516 

responses that obscured changes in insulin AUC, NKAβ1

βKD

 pseudoislets secreted more insulin at 

517 

t = 12 min during first-phase GSIS (75.5 ± 42.7%, 

= 0.001; Fig. 6G, 6H) and at t = 75 min during 

518 

KCl stimulation (140.2 ± 90.1%, 

= 0.044; Fig. 6G, 6H). These data demonstrate that NKAβ1 

519 

regulates insulin secretion in human β-cells, with effects distinct from those observe in mice, 

520 

likely due to differences in species biology, experimental conditions, and/or the timing of gene 

521 

suppression (acute shRNA-based knockdown in adult human β-cells vs. developmental knockout 

522 

in mice).

 

523 

 

524 

4. Discussion

 

525 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

Oscillations in NKA activity play an important role in glucose-stimulated β-cell Ca

2+

 oscillations 

526 

and thus pulsatile insulin secretion. Here we identify a central role for the NKAβ1 subunit in 

527 

coordinating glycemic and GPCR control of β-cell NKA activity. We show that glucose-dependent 

528 

glycolysis activates β-cell NKAs, transiently hyperpolarizing 

V

m

 independently of K

ATP

 channels. 

529 

Knockout of NKAβ1, the predominant β-cell NKA β-subunit, prolongs glucose-mediated NKA 

530 

activation and extends silent phases between glucose-stimulated Ca

2+

 oscillations. The resulting 

531 

increase in both total insulin secretion and its pulsatility leads to improved hepatic insulin 

532 

sensitivity and enhanced glucose tolerance in NKAβ1

Δ

β

 mice. Extended intervals of NKA activity 

533 

likely reflect reduced Na

+

/K

+

 pumping capacity stemming from decreased plasma membrane 

534 

NKA expression and/or compensatory replacement by the lower-capacity NKAβ3 subunit. 

535 

Moreover, ablation of β-cell NKAβ1 amplifies G

i

-GPCR-mediated inhibition of Ca

2+

 entry while 

536 

attenuating G

s

-GPCR-induced cAMP production and stimulation of Ca

2+

 influx. Together, these 

537 

findings establish NKAβ1 as a key determinant of β-cell excitability and responsiveness to 

538 

secretagogues and inhibitors, with direct consequences for pulsatile insulin release and 

539 

downstream metabolic regulation.

 

540 

β-subunits are essential for proper assembly, folding, and trafficking of NKA complexes 

541 

to the plasma membrane. Without β-subunits, NKAα1 is retained and degraded in the ER, 

542 

reducing NKA activity at the plasma membrane [70]. Our data show that NKAβ1 enhanced β-cell 

543 

NKA currents during SSTR activation, though SST still hyperpolarized 

V

m

 via NKA complexes 

544 

containing other β-subunits (e.g., β2/β3) [71]. NKAβ1 enhanced β-cell NKA current amplitude 

545 

but did not affect resting 

V

m

, which is likely due to the large conductance of K

ATP

 channels 

546 

compared to low basal NKA workload. Under stimulatory conditions, elevated Na⁺ influx raises 

547 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

NKA workload, presumably increasing its contribution to β-cell 

V

m

 hyperpolarization. Consistent 

548 

with this, NKA inhibition has been shown to increase β-cell Ca

2+

 entry and insulin secretion in a 

549 

glucose-dependent manner [36,72]. Our data suggest that NKA regulation of AP shape, in 

550 

addition to

 V

m

 hyperpolarization, tunes β-cell Ca

2+

 handling and insulin secretion. We found that 

551 

NKA activity augments β-cell AP and AHP amplitude, as observed in neurons and pancreatic α-

552 

cells [73,74]. Furthermore, NKAβ1 enhanced β-cell AHP amplitude and increased the frequency 

553 

of AP firing. This likely reflects reduced voltage-dependent inactivation of Ca

v

/K

v

 channels and 

554 

elevated intracellular K

+

, which increases the driving force for K

+

 efflux. However, further studies 

555 

are needed to clarify the precise mechanisms by which NKAβ1 regulates β-cell 

V

m

 and 

556 

excitability.

 

557 

The interval between glucose stimulation and β-cell Ca

2+

 influx is often marked by 

558 

modest, transient 

V

m

 hyperpolarization [3,75,76], which Düfer et al. attributed to NKA activity 

559 

[77]. Glucose-dependent β-cell NKA activation also transiently decreases Ca

2+

 in islets 

560 

depolarized with the K

ATP

 inhibitor tolbutamide [41,67]. However, this effect was not replicated 

561 

when oxidative phosphorylation was stimulated downstream of glycolysis, strongly suggesting 

562 

that β-cell NKAs are driven by a pool of cytosolic ATP near the plasma membrane. Indeed, there 

563 

is evidence that NKA interacts with glycolytic machinery, preferentially utilizes glycolytic ATP, 

564 

and enhances glycolytic flux when active [64,65,78]. Our data also indicate that NKAβ1 shortens 

565 

the duration of glucose-stimulated NKA activation. Similarly, NKAβ1 reduces the duration of G

i

-

566 

GPCR-mediated NKA activation. During Ca²⁺ oscillations, NKA workload rises with Na⁺ influx, and 

567 

our findings indicate that NKAβ1 shortens the silent phases caused by NKA-mediated Na⁺ 

568 

clearance. The duration of NKA-mediated hyperpolarization depends primarily on the time 

569 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

required to restore baseline intracellular Na

+

/K

+

 levels [74]. Therefore, because NKAβ1

Δ

β

 β-cells 

570 

display tonically elevated intracellular Na

+

 levels and decelerated glucose-stimulated Na

+

 efflux, 

571 

it would presumably take longer to eliminate excess Na

+

 from the preceding electrically active 

572 

period, which would prolong 

V

m

 hyperpolarization between Ca

2+

 oscillations. This is consistent 

573 

with decreased β-cell Ca

2+

 oscillation frequency following treatment with non-saturating 

574 

ouabain concentrations [36]. Future experiments will fully elucidate how NKAβ1 regulates 

575 

metabolic control of β-cell NKA activity. 

 

576 

Both metabolic and GPCR control of NKA impact insulin secretion. Rapid first-phase 

577 

insulin secretion relies on a readily releasable pool (RRP) of pre-docked granules, whereas 

578 

prolonged second-phase secretion depends on ATP-driven recruitment from reserve pools 

579 

[3,79,80]. In NKAβ1

Δ

β

 β-cells, reduced ATP consumption by plasma membrane NKAs elevates 

580 

the ATP:ADP ratio, which may increase cytosolic ATP near the exocytotic machinery. This surplus 

581 

ATP could enhance GSIS by 

a

) facilitating ATP-dependent kinesin and myosin Va–mediated 

582 

granule trafficking [81], 

b

) promoting cortical F-actin remodeling for granule docking [82], and 

c

583 

supporting SNARE complex turnover by NSF/α-SNAP [83]. NKAβ1

βKD 

enhanced GSIS in only four 

584 

of six human pseudoislet preparations, likely reflecting heterogeneity in islet isolation, shipping, 

585 

and donor factors such as age, health, and genetics. In mouse β-cells, we find that glycemic and 

586 

G

i

-GPCR regulation of NKA activity progressively declines during prolonged culture (>72 hours), 

587 

likely due to loss of the native microenvironment (innervation, vascularization, extracellular 

588 

matrix). Similarly, such culture-related dysfunction may blunt the effects of NKAβ1

βKD 

in human 

589 

pseudoislets, which are maintained in culture for five to seven days prior to perifusion assays. 

590 

Beyond total insulin output, pulsatile release patterns are also critical for glucose homeostasis, 

591 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

and their disruption is linked to insulin resistance in T2D [84,85]. Interestingly, elevated levels of 

592 

an endogenous ouabain-like NKA inhibitor have been detected in the plasma of T2D patients 

593 

and may contribute to development of insulin resistance by impairing glucose-stimulated Ca

2+

 

594 

oscillations and reducing insulin pulsatility [82]. In contrast, NKAβ1 knockout did not disrupt 

595 

Ca

2+

 oscillations, but instead prolonged silent phases between them, and presumably increased 

596 

insulin secretion per oscillation. Systemic insulin sensitivity was also enhanced, as evidenced by 

597 

blunted hepatic gluconeogenesis in NKAβ1

Δ

β

 mice. These findings raise the possibility that NKA 

598 

β-subunits influence systemic insulin action by altering β-cell secretion dynamics, warranting 

599 

further investigation beyond the islet.

 

600 

G

i

-GPCRs such as SSTRs and α2-ADRs stimulate β-cell NKA activity by increasing Src-

601 

dependent phosphorylation of NKAα1 at Y10 while reducing PKA-mediated phosphorylation at 

602 

S943 [41]. In contrast, G

s

-coupled GLP-1Rs promote PKA phosphorylation of S943. Because 

603 

NKAβ1 targets NKA complexes to caveolin-enriched lipid rafts that contain both Src and A-kinase 

604 

anchoring protein (AKAP)-tethered PKA [86–88], knockout of this subunit could alter the 

605 

compartmentalized signaling environment, thereby amplifying G

i

 ligand effects by enhancing 

606 

Src-dependent NKA activation and/or upstream G

i

-GPCR signaling [86–88]. NKAβ1 also directly 

607 

interacts with GLP-1Rs, so its loss may impair local PKA signaling near NKA complexes [47]. Such 

608 

disruption could explain the blunted effects of liraglutide on Ca

2+

 entry and global cAMP 

609 

production observed in NKAβ1

Δ

β

 islets. Notably, when forskolin was used to directly activate 

610 

adenylyl cyclases, cAMP production in NKAβ1

Δ

β

 islets matched controls, suggesting that NKAβ1 

611 

regulation of G

s

 signaling-mediated NKA inhibition could be specific to GLP-1Rs. However, β-cells 

612 

also express other G

s

-GPCRs, including glucagon receptors and glucose-dependent 

613 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

insulinotropic polypeptide receptors (GIPRs) [18–20], that may localize to lipid rafts near AKAP-

614 

tethered PKA and could likewise modulate NKA activity. Therefore, it will be important to 

615 

determine whether this mechanism extends to other G

s

-GPCRs. Furthermore, glycolytic 

616 

enzymes such as enolase 1 and ADP-dependent glucokinase have been shown to interact with 

617 

GLP-1Rs [47], suggesting that these complexes 

a)

 fuel NKA activity with glycolytic ATP, and 

b)

 

618 

stimulate glycolysis via NKA-derived ADP. These interactions likely complement other glycolytic 

619 

enzymes associated with NKA, positioning NKA-glycolytic enzyme complexes near AKAPs to fine-

620 

tune ATP availability for G

s

-coupled cAMP production. 

 

621 

In summary, we identify NKAβ1 as an important regulator of β-cell NKA activity, excitability, 

622 

and insulin secretion, integrating metabolic and GPCR-derived signals (Fig. 7A, 7B). We 

623 

demonstrate that NKAβ1 promotes efficient Na

+

 clearance during Ca

2+

 oscillations, thereby 

624 

shortening silent phases between insulin pulses. Moreover, NKAβ1 tunes β-cell responsiveness 

625 

to both inhibitory and stimulatory inputs, attenuating the effect of G

i

 ligands while supporting 

626 

G

s

-mediated stimulation of Ca²⁺ influx and cAMP production. Finally, we show that NKAβ1 

627 

influences systemic glucose metabolism, with its loss improving hepatic insulin sensitivity and 

628 

glucose tolerance. Taken together, these findings establish NKAβ1-containing NKA complexes as 

629 

key molecular determinants of β-cell electrical and secretory dynamics.

 

630 

 

631 

5. Acknowledgements

 

632 

This research was performed with the support of the Integrated Islet Distribution Program 

633 

(https://iidp.coh.org/). We especially thank the organ donors and their families. These studies 

634 

have been supported by a Vanderbilt Integrated Training in Engineering and Diabetes grant 

635 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

(T32DK101003), an Initiative for Maximizing Student Development at Vanderbilt grant 

636 

(T32GM139800), a Multidisciplinary Training in Molecular Endocrinology grant (T32DK007563), 

637 

National Institutes of Health grants (DK-097392, DK-115620, DK-129340, and DK-136768), an 

638 

American Diabetes Association Grant (1-17-IBS-024), a Juvenile Diabetes Research Foundation 

639 

grant (2-SRA-2019-701-S-B), a grant from The Leona M & Harry B. Helmsley Charitable Trust 

640 

(2306-06066), and a Pilot and Feasibility grant through the Vanderbilt Diabetes Research and 

641 

Training Center grant (P60-DK-20593).

 

642 

 

643 

6. Author contributions

 

644 

M.T.D. and D.A.J. formulated and designed experiments. M.T.D., P.K.D., R.P.M, J.R.D., S.B., S.J.P., 

645 

S.E.G, and T.W. performed experiments. M.T.D. and D.A.J. analyzed data. M.T.D. and D.A.J. 

646 

interpreted experimental results. M.T.D. and D.A.J. prepared figures. M.T.D. and D.A.J. drafted 

647 

the manuscript. M.T.D., P.K.D., R.P.M, J.R.D., S.B., S.J.P., S.E.G, T.W., and D.A.J. approved the final 

648 

manuscript submitted for publication.

 

649 

 

650 

7. References

 

651 

[1]

 

Jacobson, D.A., Philipson, L.H., 2007. Action potentials and insulin secretion: new 

652 

insights into the role of Kv channels. Diabetes, Obesity & Metabolism 9 Suppl 2(Suppl 2): 89–98, 

653 

Doi: 10.1111/j.1463-1326.2007.00784.x.

 

654 

[2]

 

Campbell, J.E., Newgard, C.B., 2021. Mechanisms controlling pancreatic islet cell 

655 

function in insulin secretion. Nature Reviews. Molecular Cell Biology 22(2): 142–58, Doi: 

656 

10.1038/s41580-020-00317-7.

 

657 

[3]

 

Rorsman, P., Ashcroft, F.M., 2018. Pancreatic β-Cell Electrical Activity and Insulin 

658 

Secretion: Of Mice and Men. Physiological Reviews 98(1): 117–214, Doi: 

659 

10.1152/physrev.00008.2017.

 

660 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

[4]

 

Contreras, R.G., Torres-Carrillo, A., Flores-Maldonado, C., Shoshani, L., Ponce, A., 2024. 

661 

Na+/K+-ATPase: More than an Electrogenic Pump. International Journal of Molecular Sciences 

662 

25(11): 6122, Doi: 10.3390/ijms25116122.

 

663 

[5]

 

Fedosova, N.U., Habeck, M., Nissen, P., 2021. Structure and Function of Na,K-ATPase-The 

664 

Sodium-Potassium Pump. Comprehensive Physiology 12(1): 2659–79, Doi: 

665 

10.1002/cphy.c200018.

 

666 

[6]

 

Obradovic, M., Sudar-Milovanovic, E., Gluvic, Z., Banjac, K., Rizzo, M., Isenovic, E.R., 

667 

2023. The Na+/K+-ATPase: A potential therapeutic target in cardiometabolic diseases. Frontiers 

668 

in Endocrinology 14: 1150171, Doi: 10.3389/fendo.2023.1150171.

 

669 

[7]

 

Scranton, K., John, S., Angelini, M., Steccanella, F., Umar, S., Zhang, R., et al., 2024. 

670 

Cardiac function is regulated by the sodium-dependent inhibition of the sodium-calcium 

671 

exchanger NCX1. Nature Communications 15(1): 3831, Doi: 10.1038/s41467-024-47850-z.

 

672 

[8]

 

Chung, Y.J., Hoare, Z., Baark, F., Yu, C.S., Guo, J., Fuller, W., et al., 2024. Elevated Na is a 

673 

dynamic and reversible modulator of mitochondrial metabolism in the heart. Nature 

674 

Communications 15(1): 4277, Doi: 10.1038/s41467-024-48474-z.

 

675 

[9]

 

Gamba, G., 2005. Molecular Physiology and Pathophysiology of Electroneutral Cation-

676 

Chloride Cotransporters. Physiological Reviews 85(2): 423–93, Doi: 

677 

10.1152/physrev.00011.2004.

 

678 

[10]

 

Parker, M.D., Boron, W.F., 2013. The Divergence, Actions, Roles, and Relatives of Sodium-

679 

Coupled Bicarbonate Transporters. Physiological Reviews 93(2): 803–959, Doi: 

680 

10.1152/physrev.00023.2012.

 

681 

[11]

 

Mollajew, R., Toloe, J., Mironov, S.L., 2013. Single KATP channel opening in response to 

682 

stimulation of AMPA/kainate receptors is mediated by Na+ accumulation and submembrane 

683 

ATP and ADP changes. The Journal of Physiology 591(10): 2593–609, Doi: 

684 

10.1113/jphysiol.2012.248369.

 

685 

[12]

 

Catterall, W.A., Lenaeus, M.J., Gamal El-Din, T.M., 2020. Structure and Pharmacology of 

686 

Voltage-Gated Sodium and Calcium Channels. Annual Review of Pharmacology and Toxicology 

687 

60: 133–54, Doi: 10.1146/annurev-pharmtox-010818-021757.

 

688 

[13]

 

Bobulescu, I.A., Di Sole, F., Moe, O.W., 2005. Na+/H+ exchangers: physiology and link to 

689 

hypertension and organ ischemia. Current Opinion in Nephrology and Hypertension 14(5): 485–

690 

94, Doi: 10.1097/01.mnh.0000174146.52915.5d.

 

691 

[14]

 

Tian, J., Xie, Z., 2008. The Na-K-ATPase and calcium-signaling microdomains. Physiology 

692 

(Bethesda, Md.) 23: 205–11, Doi: 10.1152/physiol.00008.2008.

 

693 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

[15]

 

Ruminot, I., Gutiérrez, R., Peña-Münzenmayer, G., Añazco, C., Sotelo-Hitschfeld, T., 

694 

Lerchundi, R., et al., 2011. NBCe1 mediates the acute stimulation of astrocytic glycolysis by 

695 

extracellular K+. The Journal of Neuroscience: The Official Journal of the Society for 

696 

Neuroscience 31(40): 14264–71, Doi: 10.1523/JNEUROSCI.2310-11.2011.

 

697 

[16]

 

Seflova, J., Habibi, N.R., Yap, J.Q., Cleary, S.R., Fang, X., Kekenes-Huskey, P.M., et al., 

698 

2022. Fluorescence lifetime imaging microscopy reveals sodium pump dimers in live cells. The 

699 

Journal of Biological Chemistry 298(5): 101865, Doi: 10.1016/j.jbc.2022.101865.

 

700 

[17]

 

Linnertz, H., Urbanova, P., Obsil, T., Herman, P., Amler, E., Schoner, W., 1998. Molecular 

701 

distance measurements reveal an (alpha beta)2 dimeric structure of Na+/K+-ATPase. High 

702 

affinity ATP binding site and K+-activated phosphatase reside on different alpha-subunits. The 

703 

Journal of Biological Chemistry 273(44): 28813–21, Doi: 10.1074/jbc.273.44.28813.

 

704 

[18]

 

Segerstolpe, Å., Palasantza, A., Eliasson, P., Andersson, E.-M., Andréasson, A.-C., Sun, X., 

705 

et al., 2016. Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 

706 

Diabetes. Cell Metabolism 24(4): 593–607, Doi: 10.1016/j.cmet.2016.08.020.

 

707 

[19]

 

DiGruccio, M.R., Mawla, A.M., Donaldson, C.J., Noguchi, G.M., Vaughan, J., Cowing-

708 

Zitron, C., et al., 2016. Comprehensive alpha, beta and delta cell transcriptomes reveal that 

709 

ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic 

710 

islets. Molecular Metabolism 5(7): 449–58, Doi: 10.1016/j.molmet.2016.04.007.

 

711 

[20]

 

Blodgett, D.M., Nowosielska, A., Afik, S., Pechhold, S., Cura, A.J., Kennedy, N.J., et al., 

712 

2015. Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human 

713 

Adult and Fetal Islet Cell Subsets. Diabetes 64(9): 3172–81, Doi: 10.2337/db15-0039.

 

714 

[21]

 

Bab-Dinitz, E., Albeck, S., Peleg, Y., Brumfeld, V., Gottschalk, K.E., Karlish, S.J.D., 2009. A 

715 

C-terminal lobe of the beta subunit of Na,K-ATPase and H,K-ATPase resembles cell adhesion 

716 

molecules. Biochemistry 48(36): 8684–91, Doi: 10.1021/bi900868e.

 

717 

[22]

 

Vagin, O., Tokhtaeva, E., Sachs, G., 2006. The role of the beta1 subunit of the Na,K-

718 

ATPase and its glycosylation in cell-cell adhesion. The Journal of Biological Chemistry 281(51): 

719 

39573–87, Doi: 10.1074/jbc.M606507200.

 

720 

[23]

 

Ramírez-Salinas, G., Shoshani, L., Rosas-Trigueros, J.L., Huerta, C.S., Martínez-Archundia, 

721 

M., 2025. In silico studies provide new structural insights into trans-dimerization of β1 and β2 

722 

subunits of the Na+, K+-ATPase. PloS One 20(4): e0321064, Doi: 10.1371/journal.pone.0321064.

 

723 

[24]

 

Tokhtaeva, E., Sachs, G., Sun, H., Dada, L.A., Sznajder, J.I., Vagin, O., 2012. Identification 

724 

of the amino acid region involved in the intercellular interaction between the β1 subunits of 

725 

Na+/K+ -ATPase. Journal of Cell Science 125(Pt 6): 1605–16, Doi: 10.1242/jcs.100149.

 

726 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

[25]

 

Parnaud, G., Lavallard, V., Bedat, B., Matthey-Doret, D., Morel, P., Berney, T., et al., 2015. 

727 

Cadherin engagement improves insulin secretion of single human β-cells. Diabetes 64(3): 887–

728 

96, Doi: 10.2337/db14-0257.

 

729 

[26]

 

Bosco, D., Rouiller, D.G., Halban, P.A., 2007. Differential expression of E-cadherin at the 

730 

surface of rat beta-cells as a marker of functional heterogeneity. The Journal of Endocrinology 

731 

194(1): 21–9, Doi: 10.1677/JOE-06-0169.

 

732 

[27]

 

Dissanayake, W.C., Sorrenson, B., Shepherd, P.R., 2018. The role of adherens junction 

733 

proteins in the regulation of insulin secretion. Bioscience Reports 38(2): BSR20170989, Doi: 

734 

10.1042/BSR20170989.

 

735 

[28]

 

Geron, E., Boura-Halfon, S., Schejter, E.D., Shilo, B.-Z., 2015. The Edges of Pancreatic Islet 

736 

β Cells Constitute Adhesive and Signaling Microdomains. Cell Reports 10(3): 317–25, Doi: 

737 

10.1016/j.celrep.2014.12.031.

 

738 

[29]

 

Figtree, G.A., Liu, C.-C., Bibert, S., Hamilton, E.J., Garcia, A., White, C.N., et al., 2009. 

739 

Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation. Circulation 

740 

Research 105(2): 185–93, Doi: 10.1161/CIRCRESAHA.109.199547.

 

741 

[30]

 

Jaisser, F., Jaunin, P., Geering, K., Rossier, B.C., Horisberger, J.D., 1994. Modulation of the 

742 

Na,K-pump function by beta subunit isoforms. The Journal of General Physiology 103(4): 605–

743 

23, Doi: 10.1085/jgp.103.4.605.

 

744 

[31]

 

Yu, C., Xie, Z., Askari, A., Modyanov, N.N., 1997. Enzymatic properties of human Na,K-

745 

ATPase alpha1beta3 isozyme. Archives of Biochemistry and Biophysics 345(1): 143–9, Doi: 

746 

10.1006/abbi.1997.0255.

 

747 

[32]

 

Zacherl, S., La Venuta, G., Müller, H.-M., Wegehingel, S., Dimou, E., Sehr, P., et al., 2015. A 

748 

direct role for ATP1A1 in unconventional secretion of fibroblast growth factor 2. The Journal of 

749 

Biological Chemistry 290(6): 3654–65, Doi: 10.1074/jbc.M114.590067.

 

750 

[33]

 

Rajasekaran, S.A., Gopal, J., Willis, D., Espineda, C., Twiss, J.L., Rajasekaran, A.K., 2004. 

751 

Na,K-ATPase beta1-subunit increases the translation efficiency of the alpha1-subunit in MSV-

752 

MDCK cells. Molecular Biology of the Cell 15(7): 3224–32, Doi: 10.1091/mbc.e04-03-0222.

 

753 

[34]

 

Stancill, J.S., Kasmani, M.Y., Khatun, A., Cui, W., Corbett, J.A., 2021. Single-cell RNA 

754 

sequencing of mouse islets exposed to proinflammatory cytokines. Life Science Alliance 4(6): 

755 

e202000949, Doi: 10.26508/lsa.202000949.

 

756 

[35]

 

Grapengiesser, E., 1998. Unmasking of a periodic Na+ entry into glucose-stimulated 

757 

pancreatic beta-cells after partial inhibition of the Na/K pump. Endocrinology 139(7): 3227–31, 

758 

Doi: 10.1210/endo.139.7.6106.

 

759 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

[36]

 

Grapengiesser, E., Berts, A., Saha, S., Lund, P.E., Gylfe, E., Hellman, B., 1993. Dual effects 

760 

of Na/K pump inhibition on cytoplasmic Ca2+ oscillations in pancreatic beta-cells. Archives of 

761 

Biochemistry and Biophysics 300(1): 372–7, Doi: 10.1006/abbi.1993.1050.

 

762 

[37]

 

Nita, I.I., Hershfinkel, M., Lewis, E.C., Sekler, I., 2015. A crosstalk between Na

+

 channels, 

763 

Na

+

/K

+

 pump and mitochondrial Na

+

 transporters controls glucose-dependent cytosolic and 

764 

mitochondrial Na

+

 signals. Cell Calcium 57(2): 69–75, Doi: 10.1016/j.ceca.2014.12.007.

 

765 

[38]

 

Baukrowitz, T., Tucker, S.J., Schulte, U., Benndorf, K., Ruppersberg, J.P., Fakler, B., 1999. 

766 

Inward rectification in KATP channels: a pH switch in the pore. The EMBO Journal 18(4): 847–53, 

767 

Doi: 10.1093/emboj/18.4.847.

 

768 

[39]

 

Sorensen, T., Vilsen, B., Andersen, J.P., 1997. Mutation Lys758 --> Ile of the sarcoplasmic 

769 

reticulum Ca2+-ATPase enhances dephosphorylation of E2P and inhibits the E2 to E1Ca2 

770 

transition. The Journal of Biological Chemistry 272(48): 30244–53, Doi: 

771 

10.1074/jbc.272.48.30244.

 

772 

[40]

 

Thomas, R.C., 2011. The Ca(2+): H(+) coupling ratio of the plasma membrane calcium 

773 

ATPase in neurones is little sensitive to changes in external or internal pH. Cell Calcium 49(6): 

774 

357–64, Doi: 10.1016/j.ceca.2011.03.004.

 

775 

[41]

 

Dickerson, M.T., Dadi, P.K., Zaborska, K.E., Nakhe, A.Y., Schaub, C.M., Dobson, J.R., et al., 

776 

2022. Gi/o protein-coupled receptor inhibition of beta-cell electrical excitability and insulin 

777 

secretion depends on Na+/K+ ATPase activation. Nature Communications 13(1): 6461, Doi: 

778 

10.1038/s41467-022-34166-z.

 

779 

[42]

 

El Moussawi, L., Chakkour, M., Kreydiyyeh, S.I., 2018. Epinephrine modulates Na+/K+ 

780 

ATPase activity in Caco-2 cells via Src, p38MAPK, ERK and PGE2. PloS One 13(2): e0193139, Doi: 

781 

10.1371/journal.pone.0193139.

 

782 

[43]

 

Ferjoux, G., Lopez, F., Esteve, J.-P., Ferrand, A., Vivier, E., Vely, F., et al., 2003. Critical role 

783 

of Src and SHP-2 in sst2 somatostatin receptor-mediated activation of SHP-1 and inhibition of 

784 

cell proliferation. Molecular Biology of the Cell 14(9): 3911–28, Doi: 10.1091/mbc.e03-02-0069.

 

785 

[44]

 

Féraille, E., Carranza, M.L., Gonin, S., Béguin, P., Pedemonte, C., Rousselot, M., et al., 

786 

1999. Insulin-induced stimulation of Na+,K(+)-ATPase activity in kidney proximal tubule cells 

787 

depends on phosphorylation of the alpha-subunit at Tyr-10. Molecular Biology of the Cell 10(9): 

788 

2847–59, Doi: 10.1091/mbc.10.9.2847.

 

789 

[45]

 

Petrič, M., Vidović, A., Dolinar, K., Miš, K., Chibalin, A.V., Pirkmajer, S., 2021. 

790 

Phosphorylation of Na+,K+-ATPase at Tyr10 of the α1-Subunit is Suppressed by AMPK and 

791 

Enhanced by Ouabain in Cultured Kidney Cells. The Journal of Membrane Biology 254(5–6): 

792 

531–48, Doi: 10.1007/s00232-021-00209-7.

 

793 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

[46]

 

Beguin, P., Beggah, A.T., Chibalin, A.V., Burgener-Kairuz, P., Jaisser, F., Mathews, P.M., et 

794 

al., 1994. Phosphorylation of the Na,K-ATPase alpha-subunit by protein kinase A and C in vitro 

795 

and in intact cells. Identification of a novel motif for PKC-mediated phosphorylation. The Journal 

796 

of Biological Chemistry 269(39): 24437–45.

 

797 

[47]

 

Zhang, M., Robitaille, M., Showalter, A.D., Huang, X., Liu, Y., Bhattacharjee, A., et al., 

798 

2014. Progesterone receptor membrane component 1 is a functional part of the glucagon-like 

799 

peptide-1 (GLP-1) receptor complex in pancreatic β cells. Molecular & Cellular Proteomics: MCP 

800 

13(11): 3049–62, Doi: 10.1074/mcp.M114.040196.

 

801 

[48]

 

Talbot, J., Joly, E., Prentki, M., Buteau, J., 2012. β-Arrestin1-mediated recruitment of c-

802 

Src underlies the proliferative action of glucagon-like peptide-1 in pancreatic β INS832/13 cells. 

803 

Molecular and Cellular Endocrinology 364(1–2): 65–70, Doi: 10.1016/j.mce.2012.08.010.

 

804 

[49]

 

Kimura, T., Allen, P.B., Nairn, A.C., Caplan, M.J., 2007. Arrestins and spinophilin 

805 

competitively regulate Na+,K+-ATPase trafficking through association with a large cytoplasmic 

806 

loop of the Na+,K+-ATPase. Molecular Biology of the Cell 18(11): 4508–18, Doi: 

807 

10.1091/mbc.e06-08-0711.

 

808 

[50]

 

Flodby, P., Kim, Y.H., Beard, L.L., Gao, D., Ji, Y., Kage, H., et al., 2016. Knockout Mice 

809 

Reveal a Major Role for Alveolar Epithelial Type I Cells in Alveolar Fluid Clearance. American 

810 

Journal of Respiratory Cell and Molecular Biology 55(3): 395–406, Doi: 10.1165/rcmb.2016-

811 

0005OC.

 

812 

[51]

 

Thorens, B., Tarussio, D., Maestro, M.A., Rovira, M., Heikkilä, E., Ferrer, J., 2015. Ins1(Cre) 

813 

knock-in mice for beta cell-specific gene recombination. Diabetologia 58(3): 558–65, Doi: 

814 

10.1007/s00125-014-3468-5.

 

815 

[52]

 

Dickerson, M.T., Bogart, A.M., Altman, M.K., Milian, S.C., Jordan, K.L., Dadi, P.K., et al., 

816 

2018. Cytokine-mediated changes in K+ channel activity promotes an adaptive Ca2+ response 

817 

that sustains β-cell insulin secretion during inflammation. Scientific Reports 8(1): 1158, Doi: 

818 

10.1038/s41598-018-19600-x.

 

819 

[53]

 

Corbin, K.L., West, H.L., Brodsky, S., Whitticar, N.B., Koch, W.J., Nunemaker, C.S., 2021. A 

820 

Practical Guide to Rodent Islet Isolation and Assessment Revisited. Biological Procedures Online 

821 

23(1): 7, Doi: 10.1186/s12575-021-00143-x.

 

822 

[54]

 

Vierra, N.C., Dadi, P.K., Jeong, I., Dickerson, M., Powell, D.R., Jacobson, D.A., 2015. Type 2 

823 

Diabetes-Associated K+ Channel TALK-1 Modulates β-Cell Electrical Excitability, Second-Phase 

824 

Insulin Secretion, and Glucose Homeostasis. Diabetes 64(11): 3818–28, Doi: 10.2337/db15-

825 

0280.

 

826 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

[55]

 

Zaborska, K.E., Dadi, P.K., Dickerson, M.T., Nakhe, A.Y., Thorson, A.S., Schaub, C.M., et al., 

827 

2020. Lactate activation of α-cell KATP channels inhibits glucagon secretion by hyperpolarizing 

828 

the membrane potential and reducing Ca2+ entry. Molecular Metabolism 42: 101056, Doi: 

829 

10.1016/j.molmet.2020.101056.

 

830 

[56]

 

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-

831 

time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25(4): 

832 

402–8, Doi: 10.1006/meth.2001.1262.

 

833 

[57]

 

Shi, S.R., Key, M.E., Kalra, K.L., 1991. Antigen retrieval in formalin-fixed, paraffin-

834 

embedded tissues: an enhancement method for immunohistochemical staining based on 

835 

microwave oven heating of tissue sections. The Journal of Histochemistry and Cytochemistry: 

836 

Official Journal of the Histochemistry Society 39(6): 741–8, Doi: 10.1177/39.6.1709656.

 

837 

[58]

 

Tantama, M., Martínez-François, J.R., Mongeon, R., Yellen, G., 2013. Imaging energy 

838 

status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nature 

839 

Communications 4: 2550, Doi: 10.1038/ncomms3550.

 

840 

[59]

 

Tewson, P.H., Martinka, S., Shaner, N.C., Hughes, T.E., Quinn, A.M., 2016. New DAG and 

841 

cAMP Sensors Optimized for Live-Cell Assays in Automated Laboratories. Journal of 

842 

Biomolecular Screening 21(3): 298–305, Doi: 10.1177/1087057115618608.

 

843 

[60]

 

Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., et al., 

844 

2015. Proteomics. Tissue-based map of the human proteome. Science (New York, N.Y.) 

845 

347(6220): 1260419, Doi: 10.1126/science.1260419.

 

846 

[61]

 

Pereira, R.M., Rodrigues, K.C. da C., Sant’Ana, M.R., Peruca, G.F., Morelli, A.P., Simabuco, 

847 

F.M., et al., 2020. Strength exercise reduces hepatic pyruvate carboxylase and gluconeogenesis 

848 

in DIO mice. The Journal of Endocrinology 247(2): 127–38, Doi: 10.1530/JOE-20-0193.

 

849 

[62]

 

Puigserver, P., Rhee, J., Donovan, J., Walkey, C.J., Yoon, J.C., Oriente, F., et al., 2003. 

850 

Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 

851 

423(6939): 550–5, Doi: 10.1038/nature01667.

 

852 

[63]

 

Ravier, M.A., Daro, D., Roma, L.P., Jonas, J.-C., Cheng-Xue, R., Schuit, F.C., et al., 2011. 

853 

Mechanisms of control of the free Ca2+ concentration in the endoplasmic reticulum of mouse 

854 

pancreatic β-cells: interplay with cell metabolism and [Ca2+]c and role of SERCA2b and SERCA3. 

855 

Diabetes 60(10): 2533–45, Doi: 10.2337/db10-1543.

 

856 

[64]

 

Wen, X.-P., Long, G., Zhang, Y.-Z., Huang, H., Liu, T.-H., Wan, Q.-Q., 2022. Identification of 

857 

different proteins binding to Na, K-ATPase α1 in LPS-induced ARDS cell model by proteomic 

858 

analysis. Proteome Science 20(1): 10, Doi: 10.1186/s12953-022-00193-3.

 

859 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

[65]

 

Sepp, M., Sokolova, N., Jugai, S., Mandel, M., Peterson, P., Vendelin, M., 2014. Tight 

860 

coupling of Na+/K+-ATPase with glycolysis demonstrated in permeabilized rat cardiomyocytes. 

861 

PloS One 9(6): e99413, Doi: 10.1371/journal.pone.0099413.

 

862 

[66]

 

Lewandowski, S.L., Cardone, R.L., Foster, H.R., Ho, T., Potapenko, E., Poudel, C., et al., 

863 

2020. Pyruvate Kinase Controls Signal Strength in the Insulin Secretory Pathway. Cell 

864 

Metabolism 32(5): 736-750.e5, Doi: 10.1016/j.cmet.2020.10.007.

 

865 

[67]

 

Hellman, B., Dansk, H., Grapengiesser, E., 2018. Somatostatin promotes glucose 

866 

generation of Ca2+oscillations in pancreatic islets both in the absence and presence of 

867 

tolbutamide. Cell Calcium 74: 35–42, Doi: 10.1016/j.ceca.2018.05.007.

 

868 

[68]

 

Shigeto, M., Ramracheya, R., Tarasov, A.I., Cha, C.Y., Chibalina, M.V., Hastoy, B., et al., 

869 

2015. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. The 

870 

Journal of Clinical Investigation 125(12): 4714–28, Doi: 10.1172/JCI81975.

 

871 

[69]

 

Zhang, Q., Chibalina, M.V., Bengtsson, M., Groschner, L.N., Ramracheya, R., Rorsman, 

872 

N.J.G., et al., 2014. Na+ current properties in islet α- and β-cells reflect cell-specific Scn3a and 

873 

Scn9a expression. The Journal of Physiology 592(21): 4677–96, Doi: 

874 

10.1113/jphysiol.2014.274209.

 

875 

[70]

 

Morton, M.J., Farr, G.A., Hull, M., Capendeguy, O., Horisberger, J.-D., Caplan, M.J., 2010. 

876 

Association with {beta}-COP regulates the trafficking of the newly synthesized Na,K-ATPase. The 

877 

Journal of Biological Chemistry 285(44): 33737–46, Doi: 10.1074/jbc.M110.141119.

 

878 

[71]

 

Yoshimura, S.H., Iwasaka, S., Schwarz, W., Takeyasu, K., 2008. Fast degradation of the 

879 

auxiliary subunit of Na+/K+-ATPase in the plasma membrane of HeLa cells. Journal of Cell 

880 

Science 121(Pt 13): 2159–68, Doi: 10.1242/jcs.022905.

 

881 

[72]

 

Kajikawa, M., Fujimoto, S., Tsuura, Y., Mukai, E., Takeda, T., Hamamoto, Y., et al., 2002. 

882 

Ouabain suppresses glucose-induced mitochondrial ATP production and insulin release by 

883 

generating reactive oxygen species in pancreatic islets. Diabetes 51(8): 2522–9, Doi: 

884 

10.2337/diabetes.51.8.2522.

 

885 

[73]

 

Briant, L.J.B., Dodd, M.S., Chibalina, M.V., Rorsman, N.J.G., Johnson, P.R.V., Carmeliet, P., 

886 

et al., 2018. CPT1a-Dependent Long-Chain Fatty Acid Oxidation Contributes to Maintaining 

887 

Glucagon Secretion from Pancreatic Islets. Cell Reports 23(11): 3300–11, Doi: 

888 

10.1016/j.celrep.2018.05.035.

 

889 

[74]

 

Gulledge, A.T., Dasari, S., Onoue, K., Stephens, E.K., Hasse, J.M., Avesar, D., 2013. A 

890 

sodium-pump-mediated afterhyperpolarization in pyramidal neurons. The Journal of 

891 

Neuroscience: The Official Journal of the Society for Neuroscience 33(32): 13025–41, Doi: 

892 

10.1523/JNEUROSCI.0220-13.2013.

 

893 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

[75]

 

Morales-Reyes, I., Atwater, I., Esparza-Aguilar, M., Pérez-Armendariz, E.M., 2022. Impact 

894 

of biotin supplemented diet on mouse pancreatic islet β-cell mass expansion and glucose 

895 

induced electrical activity. Islets 14(1): 149–63, Doi: 10.1080/19382014.2022.2091886.

 

896 

[76]

 

Jacobson, D.A., Kuznetsov, A., Lopez, J.P., Kash, S., Ammälä, C.E., Philipson, L.H., 2007. 

897 

Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell 

898 

Metabolism 6(3): 229–35, Doi: 10.1016/j.cmet.2007.07.010.

 

899 

[77]

 

Düfer, M., Haspel, D., Krippeit-Drews, P., Aguilar-Bryan, L., Bryan, J., Drews, G., 2009. 

900 

Activation of the Na+/K+-ATPase by insulin and glucose as a putative negative feedback 

901 

mechanism in pancreatic beta-cells. Pflugers Archiv: European Journal of Physiology 457(6): 

902 

1351–60, Doi: 10.1007/s00424-008-0592-4.

 

903 

[78]

 

Meyer, D.J., Díaz-García, C.M., Nathwani, N., Rahman, M., Yellen, G., 2022. The Na+/K+ 

904 

pump dominates control of glycolysis in hippocampal dentate granule cells. eLife 11: e81645, 

905 

Doi: 10.7554/eLife.81645.

 

906 

[79]

 

Rorsman, P., Renström, E., 2003. Insulin granule dynamics in pancreatic beta cells. 

907 

Diabetologia 46(8): 1029–45, Doi: 10.1007/s00125-003-1153-1.

 

908 

[80]

 

Henquin, J.C., 2000. Triggering and amplifying pathways of regulation of insulin secretion 

909 

by glucose. Diabetes 49(11): 1751–60, Doi: 10.2337/diabetes.49.11.1751.

 

910 

[81]

 

Varadi, A., Tsuboi, T., Rutter, G.A., 2005. Myosin Va transports dense core secretory 

911 

vesicles in pancreatic MIN6 beta-cells. Molecular Biology of the Cell 16(6): 2670–80, Doi: 

912 

10.1091/mbc.e04-11-1001.

 

913 

[82]

 

Kalwat, M.A., Thurmond, D.C., 2013. Signaling mechanisms of glucose-induced F-actin 

914 

remodeling in pancreatic islet β cells. Experimental & Molecular Medicine 45(8): e37, Doi: 

915 

10.1038/emm.2013.73.

 

916 

[83]

 

Banerjee, A., Barry, V.A., DasGupta, B.R., Martin, T.F., 1996. N-Ethylmaleimide-sensitive 

917 

factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. The Journal of 

918 

Biological Chemistry 271(34): 20223–6, Doi: 10.1074/jbc.271.34.20223.

 

919 

[84]

 

Matveyenko, A.V., Liuwantara, D., Gurlo, T., Kirakossian, D., Dalla Man, C., Cobelli, C., et 

920 

al., 2012. Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. 

921 

Diabetes.. 61(9): 2269–79, Doi: 10.2337/db11-1462.

 

922 

[85]

 

Satin, L.S., Butler, P.C., Ha, J., Sherman, A.S., 2015. Pulsatile insulin secretion, impaired 

923 

glucose tolerance and type 2 diabetes. Molecular Aspects of Medicine 42: 61–77, Doi: 

924 

10.1016/j.mam.2015.01.003.

 

925 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

[86]

 

Liu, L., Askari, A., 2006. Beta-subunit of cardiac Na+-K+-ATPase dictates the 

926 

concentration of the functional enzyme in caveolae. American Journal of Physiology. Cell 

927 

Physiology 291(4): C569-578, Doi: 10.1152/ajpcell.00002.2006.

 

928 

[87]

 

Nichols, C.B., Rossow, C.F., Navedo, M.F., Westenbroek, R.E., Catterall, W.A., Santana, 

929 

L.F., et al., 2010. Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 

930 

with a subpopulation of L-type calcium channels. Circulation Research 107(6): 747–56, Doi: 

931 

10.1161/CIRCRESAHA.109.216127.

 

932 

[88]

 

Nie, Y., Bai, F., Chaudhry, M.A., Pratt, R., Shapiro, J.I., Liu, J., 2020. The Na/K-ATPase α1 

933 

and c-Src form signaling complex under native condition: A crosslinking approach. Scientific 

934 

Reports 10(1): 6006, Doi: 10.1038/s41598-020-61920-4.

 

935 

 

936 

8. Figure Captions

 

937 

 

938 

Figure 1. β-Cell NKAβ1 localizes to the plasma membrane and influences insulin secretion.

 

939 

A

B, C

 Representative immunofluorescent staining of control mouse pancreas (

A

), healthy 

940 

human pancreas (

B

), and NKAβ1

Δ

β

 pancreas (

C

) sections for insulin (green), glucagon (magenta), 

941 

and NKAβ1 (red). 

D

 Immunoblot of Ins1cre and NKAβ1

Δ

β

 islet lysates probed for NKAβ1 (~35 

942 

kDa) and GAPDH protein. 

E

 (Left) Blood glucose levels during intraperitoneal glucose tolerance 

943 

tests (IPGTTs) in 

Atp1b1

flox/flox

 (white, 

= 10 mice) and NKAβ1

Δ

β

 (red, 

= 9 mice) mice; (Right) 

944 

weight of mice measured prior to IPGTT. 

F

 Blood glucose levels during intraperitoneal pyruvate 

945 

tolerance tests (IPPTTs) in 

Atp1b1

flox/flox

 (white, 

= 6 mice) and NKAβ1

Δ

β

 (red, 

= 7 mice) mice. 

946 

G

 Dynamic glucose-stimulated insulin secretion (GSIS) and KCl-stimulated insulin secretion from 

947 

Ins1cre (blue, 

= 3 islet preps) and NKAβ1

Δ

β

 (red, 

= 3 islet preps) islets. 

H

 Insulin area under 

948 

the curve (AUC) from time course shown in 

G

I

 Total insulin content in Ins1cre (blue, 

= 4 islet 

949 

preps) and NKAβ1

Δ

β

 (red, 

= 4 islet preps) islets. Statistical analyses were performed using 

950 

unpaired two-sided t-tests (

E

-

G

,

 I

) or two-way ANOVA with Šidák’s post-hoc multiple 

951 

comparisons tests (

H

); *

P

<0.05, ***

P

<0.001. 

 

952 

 

953 

Figure 2. NKAβ1 regulates β-cell NKA currents and action potential kinetics.

 

954 

A, B

 Representative Ins1cre (blue, (

A

)) and NKAβ1

Δ

β

 (red, (

B

)) β-cell 

V

m

 recordings within intact 

955 

islets showing typical responses to 200 nM somatostatin (SST) and 100 µM ouabain (Oua) in the 

956 

presence of 20 mM glucose (20G) + 1 mM tolbutamide (Tolb). Whole-cell β-cell currents were 

957 

measured (indicated by arrows) in response to a voltage ramp protocol (inset). 

C

 Ins1cre (blue, 

n

 

958 

= 10 β-cells) and NKAβ1

Δ

β

 β-cell (red, 

n

 = 10 β-cells) 

V

m

 measured with 2 mM glucose (2G), 20G 

959 

+ 1 mM Tolb, 20G + 1 mM Tolb + 200 nM SST, and 20G + 1 mM Tolb + 200 nM SST+100 µM Oua. 

960 

D

 Oua-sensitive NKA currents measured in Ins1cre (blue, 

= 10 β-cells) and NKAβ1

Δ

β

 β-cells 

961 

(red, 

= 10 β-cells) with 20G + 1 mM Tolb. 

E

 Oua-sensitive NKA currents measured in Ins1cre 

962 

(blue, 

= 10 β-cells) and NKAβ1

Δ

β

 β-cells (red, 

= 10 β-cells) with 20G + 1 mM Tolb + 200 nM 

963 

SST. 

F–K

 Quantification of Ins1cre (blue, 

= 10 β-cells) and NKAβ1

Δ

β

 β-cell (red, 

= 10 β-cells) 

964 

action potential (AP) parameters with 20G + 1 mM Tolb and 20G + 1 mM Tolb + 200 nM SST + 

965 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

100 µM Oua: AP amplitude (

F

), afterhyperpolarization (AHP) amplitude (

G

), max rise slope (

H

), 

966 

max decay slope (

I

), instantaneous frequency (

J

), and interevent interval (

K

). Statistic al analyses 

967 

were performed using unpaired two-sided t-tests (

D, E

) or two-way ANOVA with Šidák’s post-

968 

hoc multiple comparisons tests (

C, F-K

); *

P

<0.05, **

P

<0.01, ***

P

<0.001, ****

P

<0.0001.

 

969 

 

970 

Figure 3. NKAβ1 facilitates glycolysis-dependent Ca²⁺ influx and tunes β-cell ATP consumption.

 

971 

A

 Representative Fura-2 AM Ca

2+

 traces from Ins1cre (blue) and NKAβ1

Δ

β

 (red) islets stimulated 

972 

with 9 mM glucose (9G) or 9 mM α-ketoisocaproate (α-KIC). 

B

 Duration of glucose- (

= 14 islet 

973 

preps) and α-KIC-induced (

= 3 islet preps) Ca²⁺ decreases prior to Ca

2+

 influx in Ins1cre (blue) 

974 

and NKAβ1

Δ

β

 (red) islets. 

C

 Total glucose- (

= 10 islet preps) and α-KIC-induced (

= 3 islet 

975 

preps) Ca²⁺ influx (AUC) into Ins1cre (blue) and NKAβ1

Δ

β

 (red) islets. 

D

 Rate of glucose- (

= 12 

976 

islet preps) and α-KIC-induced (

n

=3 islet preps) Ca²⁺ influx into Ins1cre (blue) and NKAβ1

Δ

β

 (red) 

977 

islets. 

E

 Representative Perceval HR ATP:ADP ratio response from Ins1cre (blue) and NKAβ1

Δ

β

 

978 

(red) islets with 2G, 9G, and 5 µM FCCP. Arrows indicate where the rates of ATP:ADP ratio 

979 

change presented in panels 

G

H

, and 

were measured. 

F

 ATP:ADP ratio in Ins1cre (blue, 

= 4 

980 

islet preps) and NKAβ1

Δ

β

 (red, 

= 4 islet preps) islets with 2G and 9G relative to Ins1cre controls 

981 

at 2G. 

G

 Rate of glucose-stimulated ATP production in Ins1cre (blue, 

= 4 islet preps) and 

982 

NKAβ1

Δ

β

 (red, 

= 4 islet preps) islets. 

H

 Rate of ATP consumption during glucose stimulation in 

983 

Ins1cre (blue, 

= 4 islet preps) and NKAβ1

Δ

β

 (red, 

= 4 islet preps) islets. 

I

 Rate of ATP depletion 

984 

following FCCP treatment in Ins1cre (blue, 

= 4 islet preps) and NKAβ1

Δ

β

 (red, 

= 4 islet preps) 

985 

islets. Statistical analyses were performed using unpaired two-sided t-tests (

G-I

) or two-way 

986 

ANOVA with Šidák’s post-hoc multiple comparisons tests (

B-D, F

); *

P

<0.05, **

P

<0.01, 

987 

****

P

<0.0001.

 

988 

 

989 

Figure 4. NKAβ1 promotes efficient β-cell Na⁺ extrusion.

 

990 

A

 Representative Fura-2 AM Ca²⁺ traces from Ins1cre (blue) and NKAβ1

Δ

β

 (red) islets stimulated 

991 

with 20 mM glucose (20G) in the presence of 1 mM Tolb. 

B

 Duration of glucose-induced 

992 

suppression of Ca²⁺ influx into Ins1cre (blue, 

= 5 islet preps) and NKAβ1

Δ

β

 (red, 

= 5 islet 

993 

preps) islets. 

C

 Representative Fura-2 AM Ca²⁺ traces from Ins1cre (blue) and NKAβ1

Δ

β

 (red) 

994 

islets stimulated with 9 mM α-KIC in the presence of 1 mM Tolb. 

D

 Glucose- (

= 5 islet preps) 

995 

and α-KIC-induced (

= 3 islet preps) Ca²⁺ changes (AUC) in Ins1cre (blue) and NKAβ1

Δ

β

 (red) 

996 

islets. 

E

 Average SBFI AM Na⁺ traces in Ins1cre (blue) and NKAβ1

Δ

β

 (red) islets stimulated with 

997 

9G in the presence of 125 µM diazoxide (DZ). 

F

 Intracellular Na⁺ in Ins1cre (blue, 

= 3 islet 

998 

preps) and NKAβ1

Δ

β

 (red, 

= 3 islet preps) islets with 2G and 11 mM glucose (11G) relative to 

999 

Ins1cre controls at 2G. 

Na⁺ efflux rate constants for Ins1cre (blue, 

= 3 islet preps) and 

1000 

NKAβ1

Δ

β

 (red, 

= 3 islet preps) islets. 

H

 Na⁺ clearance half-lives for Ins1cre (blue, 

= 3 islet 

1001 

preps) and NKAβ1

Δ

β

 (red, 

= 3 islet preps) islets. Statistical analyses were performed using 

1002 

unpaired two-sided t-tests (

B

E

G

H

) or two-way ANOVA with Šidák’s post-hoc multiple 

1003 

comparisons tests (

D

F

); *

P

<0.05, **

P

<0.01, ***

P

<0.001, ****

P

<0.0001.

 

1004 

 

1005 

Figure 5. NKAβ1 tunes inhibitory and stimulatory GPCR regulation of β-cell Ca²⁺ handling.

 

1006 

A

 Representative Fura-2 AM Ca²⁺ traces from Ins1cre (blue) and NKAβ1

Δ

β

 (red) islets with 9G 

1007 

with or without 20 nM SST. 

B

 Ca²⁺ plateau fraction for Ins1cre (blue, 

= 4 islet preps) and 

1008 

NKAβ1

Δ

β

 (red, 

= 4 islet preps) islets with 9G and 9G + 20 nM SST. 

C

 SST-induced change in Ca²⁺ 

1009 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

plateau fraction for Ins1cre (blue, 

= 4 islet preps) and NKAβ1

Δ

β

 (red, 

= 4 islet preps) islets. 

D

 

1010 

Representative Fura-2 AM Ca²⁺ traces from Ins1cre (blue) and NKAβ1

Δ

β

 (red) islets during α2-

1011 

ADR activation with 100 nM clonidine (Clon) in the presence of 9G and 1 mM Tolb. 

E

 Clon-

1012 

induced change in Ca²⁺ plateau fraction in Ins1cre (blue, 

= 3 islet preps) and NKAβ1

Δ

β

 (red, 

1013 

3 islet preps) islets in the presence of 9G and 1 mM Tolb. 

F

 Immunoblot of NKAβ1 (and 

1014 

associated proteins) immunoprecipitated from Ins1cre islet lysates then probed for NKAβ1 

1015 

(~100 kDa) and GLP-1R (~60 kDa) protein. 

G

 Representative Fura-2 AM Ca²⁺ traces from Ins1cre 

1016 

(blue) and NKAβ1

Δ

β

 (red) islets during GLP-1R activation with 200 nM liraglutide (Lira) in the 

1017 

presence of 20G, 1 mM Tolb, and 200 mM SST. 

H

 Ca²⁺ plateau fraction in Ins1cre (blue, 

= 4 

1018 

islet preps) and NKAβ1

Δ

β

 (red, 

= 4 islet preps) islets in the presence of 20G, 1 mM Tolb, and 

1019 

200 nM SST. 

I

 Lira-induced change in Ca²⁺ plateau fraction in Ins1cre (blue, 

= 4 islet preps) and 

1020 

NKAβ1

Δ

β

 (red, 

= 4 islet preps) islets in the presence of 20G, 1 mM Tolb, and 200 nM SST. 

J

 

1021 

Representative cADDis cAMP traces during stimulation with 200 nM Lira in the presence of 11G. 

1022 

K

 Representative cADDis cAMP traces during stimulation with 5 µM forskolin (Fsk) in the 

1023 

presence of 11G. 

L

 cAMP responses (AUC) to Lira (

= 4 islet preps) and Fsk (

= 3 islet preps) in 

1024 

Ins1cre (blue) and NKAβ1

Δ

β

 (red) islets. Statistical analyses were performed using unpaired two-

1025 

sided t-tests (

C

E

H

I

) or two-way ANOVA with Šidák’s post-hoc multiple comparisons tests (

B

,

 

1026 

L

); *

P

<0.05, **

P

<0.01, ***

P

<0.001.

 

1027 

 

1028 

Figure 6. NKAβ1 regulates human β-cell Ca²⁺ handling and insulin secretion.

 

1029 

A

 

ATP1B1

 and 

ATP1A1

 mRNA expression in purified human β-cells transduced with scramble 

1030 

shRNA (blue, n = 4 islet donors) or 

ATP1B1

 shRNA (red, n = 4 islet donors). 

B

 Representative 

1031 

Fura-2 AM Ca²⁺ traces from dispersed human β-cells transduced with scramble (blue) or 

ATP1A1

 

1032 

(red) shRNA with 2G, 9G, and 9G + 200 nM SST. 

C

 Intracellular Ca²⁺ (AUC) in human β-cells 

1033 

transduced with scramble (blue, 

= 3 islet donors) and 

ATP1B1

 shRNA (red, 

= 3 islet donors) 

1034 

with 2G, 9G, and 9G + 200 nM SST. 

D

 Insulin content of human pseudoislets containing β-cells 

1035 

transduced with scramble (blue, 

= 6 islet donors) or 

ATP1B1

 shRNA (red, 

= 6 islet donors). 

E

 

1036 

Dynamic GSIS and KCl-stimulated insulin secretion from human pseudoislets containing β-cells 

1037 

transduced with scramble (blue,

 n 

= 6 islet donors) or 

ATP1B1

 shRNA (red, 

= 6 islet donors). 

1038 

Data were normalized to insulin content. 

F

 Insulin secretion (AUC) from time course shown in 

E

1039 

G

 Dynamic GSIS and KCl-stimulated insulin secretion from human pseudoislets containing β-cells 

1040 

transduced with scramble (blue,

 n 

= 6 islet donors) or 

ATP1B1

 shRNA (red, 

= 6 islet donors). 

1041 

Data were normalized to pseudoislet number. 

H

 Insulin secretion (AUC) from time course shown 

1042 

in 

G

. Statistical analyses were performed using paired two-sided t-tests (

D

E

G

) or two-way 

1043 

ANOVA with Šidák’s post-hoc multiple comparisons tests (

A

,

 C

,

 F

,

 H

); *

P

<0.05, **

P

<0.01, 

1044 

****

P

<0.0001.

 

1045 

 

1046 

Figure 7. Model of NKA β-subunit control of β-cell ion homeostasis and signaling.

 

1047 

A

 In control β-cells, NKAβ1-containing NKA complexes preferentially utilize glycolytically-derived 

1048 

ATP to maintain high intracellular K

+

 and low intracellular Na

+

. G

i

 signaling promotes cyclical NKA 

1049 

activity via Src-mediated NKA phosphorylation, while GLP-1R signaling reduces NKA activity 

1050 

through cAMP production and PKA-mediated phosphorylation. 

B

 In NKAβ1 knockout β-cells, 

1051 

remaining NKAβ3-containing NKA complexes exhibit diminished pumping capacity, leading to 

1052 

Na

accumulation. Decreased coupling of NKA complexes to glycolytic ATP pools results in ATP 

1053 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

buildup. Loss of NKAβ1/GLP-1R interactions attenuates PKA-mediated inhibition of NKA activity, 

1054 

whereas cyclical G

i

-GPCR-driven NKA activation is enhanced.

 

1055 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

RRID

Age

BMI

Assays performed

SAMN41475017

63

24.9

qRTPCR

SAMN41657868

38

25.5

qRTPCR

SAMN47541014

45

31.9

qRTPCR

SAMN31697847

30

31.2

Ca

2+

 imaging

SAMN32537360

51

24.8

Ca

2+

 imaging

SAMN32875450

60

25.2

Ca

2+

 imaging

SAMN39912961

39

31.0

Insulin secretion

SAMN39980165

60

29.6

Insulin secretion

SAMN40100962

58

28.8

Insulin secretion

SAMN41218531

38

29.1

Insulin secretion

SAMN46859494

23

30.7

Insulin secretion

SAMN47788742

51

26

Insulin secretion

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

Ins1cre

NKA

β

1

∆β

kDa

NKA

β

1

GAPDH

25

Atp1b1

flox/flox

NKA

β

1

∆β

Blood glucose (mg/dL)

400

300

200

100

0

Time post-pyruvate (Minutes)

0

20

40

60

80 100 120

25
20
15
10

5
0

100

80

60

40

Insulin secretion (µg/L)

Time (Minutes)

20

15

10

5

0

40

35

Ins1cre

NKA

β

1

∆β

2G

16.7G

30 mM KCl

2G

(0-4 Min)

16.7G

(5-10 Min)

16.7G

(13-20 Min)

11G+KCl

(32-38 Min)

60
40
20

0

500

400

300

200

Insulin secretion (AUC)

Ins1cre

NKA

β

1

∆β

Atp1b1

flox/flox

NKA

β

1

∆β

Blood glucose (mg/dL)

Time post-insulin (Minutes)

500
400
300
200
100

0

0

20

40

60

80 100 120

✱✱✱

✱✱✱

Insulin content

relative to controls

1.5

1.0

0.5

0.0

25

37

25

37

✱✱✱

A)

B)

C)

D)

E)

F)

G)

Ins1cre

NKA

β

1

∆β

80

NKA

β

1

Insulin

Glucagon

Merged

50 µm

Human pancreas

50 µm

NKA

β

1

Insulin

Glucagon

Merged

Mouse pancreas

50 µm

NKA

β

1

Insulin

Glucagon

Merged

Mouse pancreas

H)

I)

Mouse weight (g)

30

20

10

0

25

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

Ins1cre

β

NKA

β

1KO

Membrane potential (

V

m

)

-100

-80

-60

-40

-20

0

60 Seconds

Membrane potential (

V

m

)

-100

-80

-60

-40

-20

0

60 Seconds

Ins1cre

β

NKA

β

1KO

2G

20G+1mM Tolb

2G

20G+1 mM Tolb

200 nM SST

200 nM SST

200 µM Oua

200 µM Oua

Ins1cre

β

NKA

β

1KO

Basal NKA

 currents (pA)

SST

-activated NKA

 currents (pA)

0

10

20

30

0

10

20

30

Membrane potential (mV)

-100 -90 -80 -70 -60 -50

Membrane potential (mV)

-100 -90 -80 -70 -60 -50

Ins1cre

β

NKA

β

1KO

*

*

Membrane potential (mV)

-100

-80

-60

-40

-20

0

2G

20G+T

olb

+SST +Oua

-60

mV

-100 mV

-50 mV

-60

mV

Voltage ramp

A)

B)

C)

D)

E)

✱✱✱✱

✱✱✱

✱✱

✱✱

✱✱✱✱

✱✱

✱✱

0

10

20

30

40

AP

 peak amplitude (mV)

20G+T

olb

20G+T

olb

+Oua

20G+T

olb

20G+T

olb

+Oua

0

1

2

3

4

AHP

 amplitude (mV)

5

20G+T

olb

20G+T

olb

+Oua

0

1

2

Max rise slope (mV/ms)

3

20G+T

olb

20G+T

olb

+Oua

-3

-2

-1

Max decay slope (mV/ms)

0

20G+T

olb

20G+T

olb

+Oua

0

2

4

Instantaneous frequency (Hz)

6

20G+T

olb

20G+T

olb

+Oua

0.0

0.5

1.0

Interevent interval (s)

1.5

2.0

Ins1cre

β

NKA

β

1KO

F)

G)

H)

I)

J)

K)

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

2G

9G

0.2 F/F

min

300 Seconds

0.2 F/F

min

300 Seconds

Ins1cre

β

NKA

β

1KO

2G

9 mM 

α

-KIC

A)

Ins1cre

β

NKA

β

1KO

✱✱

✱✱

0.0

0.5

1.0

1.5

2.0

ATP:ADP

 ratio relative

to control at 2G

2.5

2G

9G

Ins1cre

β

NKA

β

1KO

B)

ATP:ADP Ratio (F

480

/F

405

)

300 Sec

0.5

1.0

1.5

2.0

2.5

Ins1cre

β

NKA

β

1KO

2G

9G

5 µM FCCP

E)

Glucose-stimulated

(A

TP:ADP

 ratio) (Slope)

0.000

0.005

0.010

0.015

0.050

0.025

Ca

2+

-induced

(A

TP:ADP) ratio (Slope)

-6

-4

-2

0

FCCP-mediated

(A

TP:ADP) ratio (Slope)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0

200

400

600

Ca

2+

 response time (Sec)

✱✱✱✱

9G

α

-KIC

800

Islet glucose-stimulated 

Ca

2+

 influx (Slope)

0

20

40

60

80

9G

α

-KIC

✱✱

✱✱

C)

D)

F)

G)

H)

I)

3.0

3.5

0

50

100

150

Islet glucose-stimulated 

Ca

2+

 influx (AUC)

200

9G

α

-KIC

250

G)

H)

I)

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

0.000

0.001

0.002

0.003

0.004

0.005

0

100

200

300

400

500

Rate constant (1/Sec)

Half-life (Sec)

Ins1cre

β

NKA

β

1KO

Ins1cre

β

NKA

β

1KO

125 µM DZ

2G

11G

300 Sec

1.12
1.10
1.08
1.06
1.04
1.02
1.00

Islet Na

+

relative to control 

0.2 F/F

min

600 Seconds

2G

20G

1 mM Tolb

Ins1cre

β

NKA

β

1KO

Glucose-stimulated

Ca

2+

 decrease (Seconds)

0

200

400

600

800

Ins1cre

β

NKA

β

1KO

1000

0

50

100

150

200

Islet Ca

2+

 (AUC)

✱✱✱✱

✱✱✱

✱✱

20G

α-KIC

0.2 F/F

min

600 Seconds

2G

1 mM Tolb

9 mM 

α

-KIC

A)

B)

Ins1cre

β

NKA

β

1KO

Ins1cre

β

NKA

β

1KO

250

0

1

2

3

Islet Na

+

 relative to control 

2G

11G

✱✱

C)

D)

E)

F)

G)

H)

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

0.1 F/F

min

600 Seconds

11G

200 nM Lira

Ins1cre 

NKA

β

1

∆β

 

0.1 F/F

min

600 Seconds

11G

5 µM Fsk

0.0

0.1

0.2

0.3

0.4

0.5

Ca

2+

 plateau fraction

Ins1cre

NKA

β

1

∆β

0.2 F/F

min

600 Seconds

✱✱✱

9G 9G+SST

9G

20 nM SST

✱✱

✱✱✱

0.0

0.2

0.4

0.6

0.8

SST

-induced plateau

 fraction decrease

Ins1cre

0.0

0.1

0.2

0.3

0.4

Ca

2+

 plateau fraction

✱✱

Ins1cre
NKA

β

1

∆β

NKA

β

1

∆β

0.1 F/F

min

600 Seconds

9G + 1 mM Tolb

100 nM Clon

✱✱

1.0

0.5

0.2 F/F

min

600 Seconds

Ins1cre

NKA

β

1

∆β

Ins1cre

NKA

β

1

∆β

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ca

2+

 plateau fraction

20G+Tolb+SST

1 mM Tolb+200 nM SST

200 nM Lira

20G

A)

C)

B)

D)

E)

F)

H)

G)

J)

K)

0.0

0.4

1.2

1.4

ΔCa

2+

 plateau fraction

1.8

2.0

+Lira

1.6

1.0

L)

Ins1cre

NKA

β

1

∆β

I)

50

GLP-1R

kDa

100

NKA

β

1

Mouse

Islets

α

-GLP-1R (Co-IP)

α

-NKA

β

1 (IP)

Islet cAMP

 (AUC)

Lira

Ins1cre

NKA

β

1

∆β

0

100

200

300

Fsk

50

150

250

350

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

ATP1B1

ATP1A1

mRNA

 expression relative

to scramble shRNA

0.0

0.5

1.0

1.5

Scramble

shRNA

ATP1B1

shRNA

A)

Scramble shRNA

ATP1B1 shRNA

Human 

β

-cell Ca

2+

 (F

340

/F

380

)

0.65

0.70

0.75

0.80

0.85

Time (Minutes)

0

1000

2000

3000

2G

9G

200 nM SST

B)

2G

9G

9G+SST

0.0

0.5

1.0

1.1

1.2

1.3

Ca

2+

 relative to

scramble shRNA

 (AUC)

Scramble shRNA

ATP1B1 shRNA

✱✱

C)

E)

Time (Minutes)

0

20

40

60

80

0

1

2

Insulin secretion (% conte

nt

)

Scramble shRNA

ATP1B1 shRNA

1G

11G

1G

30mM KCl

3

F)

Insulin secretion (AUC)

0.2

0.3

0.4

0.5

9-15

Min

15-30

Min

72-81

Min

0.0

0.1

D)

0.0

1.0

2.0

3.0

Insulin content relative

to scramble shRNA

✱✱

Scramble shRNA

ATP1B1 shRNA

4

Scramble shRNA

ATP1B1 shRNA

✱✱✱✱

2.0

Insulin secretion (AUC)

0.04

0.06

0.08

0.00

0.02

9-15

Min

15-30

Min

72-81

Min

✱✱

0.000

0.002

0.004

Insulin secretion (pmol/islet

)

Time (Minutes)

0

20

40

60

80

0.006

Scramble shRNA

ATP1B1 shRNA

1G

11G

1G

30mM KCl

Scramble shRNA

ATP1B1 shRNA

G)

H)

0.10

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

 

 

 

 

 

 

 

 

 

 

 

  

!

  

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A)

B)

Wild type 

β

-cell

NKA

β

1 knockout 

β

-cell

Elevated

ATP:ADP ratio

Augmented

G

i

-GPCR-induced

NKA activation

Diminished

GLP-1R-mediated

NKA inhibition

Reduced NKA

pumping function

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

Highlights

 

 

The Na⁺/K⁺-ATPase β1-subunit (NKAβ1) is the predominant β-subunit expressed in mouse 
and human pancreatic β-cells.

 

 

Genetic ablation of β-cell NKAβ1 enhances glucose tolerance and hepatic insulin sensitivity 

in vivo

.

 

 

Loss of NKAβ1 increases first- and second-phase glucose-stimulated insulin secretion (GSIS) 
by prolonging silent phases of Ca²⁺ oscillations.

 

 

NKAβ1 facilitates efficient Na⁺ clearance and shortens β-cell silent phases during glucose-
stimulated activity.

 

 

NKAβ1 enhances somatostatin-induced NKA currents, regulates action potential 
afterhyperpolarization, and increases firing frequency.

 

 

NKAβ1 modulates GPCR signaling by attenuating inhibitory G

i

-coupled effects and 

augmenting stimulatory GLP-1 receptor-mediated cAMP production and Ca²⁺ entry.

 

 

Knockdown of NKAβ1 in human β-cells elevates basal Ca²⁺ and increases insulin secretion, 
revealing a conserved role across species.

 

 

These findings establish NKAβ1-containing NKA complexes as key regulators of β-cell 
excitability, Ca²⁺ oscillations, and systemic glucose homeostasis.

 

 

Journal Pre-proof

1-s2.0-S2212877825002030-main-html.html
background image

Declaration of Interest Statement

 

The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.

 

Journal Pre-proof